Menu Close

If-x-R-the-least-value-of-the-expression-x-2-6x-5-x-2-2x-1-is-




Question Number 81672 by zainal tanjung last updated on 14/Feb/20
If x ∈ R, the least value of the  expression ((x^2 −6x+5)/(x^2 +2x+1)) is
IfxR,theleastvalueoftheexpressionx26x+5x2+2x+1is
Commented by Kunal12588 last updated on 14/Feb/20
y=(((x−5)(x−1))/((x+1)^2 ))  (dy/dx)=(((x+1)^2 [(x−5)+(x−1)]−(x−5)(x−1)[2(x+1)])/((x+1)^4 ))  ⇒(dy/dx)=((2(x^2 +2x+1)(x−3)−2(x−5)(x^2 −1))/((x+1)^4 ))  ⇒(dy/dx)=((2[x^3 +2x^2 +x−3x^2 −6x−3−(x^3 −5x^2 −x+5)])/((x+1)^4 ))  ⇒(dy/dx)=((2(4x^2 −4x−8))/((x+1)^4 ))  ⇒(dy/dx)=((8(x^2 −x−2))/((x+1)^4 ))  ⇒(dy/dx)=((8(x−2)(x+1))/((x+1)^4 ))  for max or min  (dy/dx)=0⇒x=2, x≠−1  (d^2 y/dx^2 )>0 when x=2  y_(local min) =(((2−5)(2−1))/((2+1)^2 ))=((−3)/3^2 )=−(1/3)=−0.3^(−)
y=(x5)(x1)(x+1)2dydx=(x+1)2[(x5)+(x1)](x5)(x1)[2(x+1)](x+1)4dydx=2(x2+2x+1)(x3)2(x5)(x21)(x+1)4dydx=2[x3+2x2+x3x26x3(x35x2x+5)](x+1)4dydx=2(4x24x8)(x+1)4dydx=8(x2x2)(x+1)4dydx=8(x2)(x+1)(x+1)4formaxormindydx=0x=2,x1d2ydx2>0whenx=2ylocalmin=(25)(21)(2+1)2=332=13=0.3
Commented by Tony Lin last updated on 14/Feb/20
let  ((x^2 −6x+5)/(x^2 +2x+1))=k  ⇒x^2 −6x+5=kx^2 +2kx+k  ⇒(k−1)x^2 +(2k+6)x+(k−5)=0  Δ=(2k+6)^2 −4(k−1)(k−5)=0  ⇒k=−(1/3) when x=2  ((x^2 −6x+5)/(x^2 +2x+1))=−(1/3)min
letx26x+5x2+2x+1=kx26x+5=kx2+2kx+k(k1)x2+(2k+6)x+(k5)=0Δ=(2k+6)24(k1)(k5)=0k=13whenx=2x26x+5x2+2x+1=13min
Commented by mathmax by abdo last updated on 14/Feb/20
f(x)=((x^2 +2x+1−8x+4)/(x^2  +2x+1)) =1+((4−8x)/(x^2  +2x+1)) ⇒  f^′ (x)=−4(((2x−1)/(x^2  +2x+1)))^((1)) =−4(((2(x^2 +2x+1)−(2x−1)(2x+2))/((x^2  +2x+1)^2 )))  =−4×((2x^2  +4x+2−4x^2 −4x+2x+2)/((x+1)^4 ))=−4×((−2x^2 +2x+4)/((x+1)^4 ))  =8×((x^2 −x−2)/((x+1)^4 )) so f^′ (x)=0 ⇔x^2 −x−2=0 and x≠−1  Δ=1−4(−2)=9 ⇒x_1 =((1+3)/2)=2 and x_2 =((1−3)/2)=−1  x              −∞                     −1                   2             +∞  f^′                                  +          ∣∣         −       0       +  f                             incr                 decr     f(2)         incr  inf f(x) =f(2)=((4−12+5)/(4+4+1)) =((−3)/9) =−(1/3)
f(x)=x2+2x+18x+4x2+2x+1=1+48xx2+2x+1f(x)=4(2x1x2+2x+1)(1)=4(2(x2+2x+1)(2x1)(2x+2)(x2+2x+1)2)=4×2x2+4x+24x24x+2x+2(x+1)4=4×2x2+2x+4(x+1)4=8×x2x2(x+1)4sof(x)=0x2x2=0andx1Δ=14(2)=9x1=1+32=2andx2=132=1x12+f+∣∣0+fincrdecrf(2)incrinff(x)=f(2)=412+54+4+1=39=13

Leave a Reply

Your email address will not be published. Required fields are marked *