If-x-R-the-least-value-of-the-expression-x-2-6x-5-x-2-2x-1-is- Tinku Tara June 14, 2023 None 0 Comments FacebookTweetPin Question Number 81672 by zainal tanjung last updated on 14/Feb/20 Ifx∈R,theleastvalueoftheexpressionx2−6x+5x2+2x+1is Commented by Kunal12588 last updated on 14/Feb/20 y=(x−5)(x−1)(x+1)2dydx=(x+1)2[(x−5)+(x−1)]−(x−5)(x−1)[2(x+1)](x+1)4⇒dydx=2(x2+2x+1)(x−3)−2(x−5)(x2−1)(x+1)4⇒dydx=2[x3+2x2+x−3x2−6x−3−(x3−5x2−x+5)](x+1)4⇒dydx=2(4x2−4x−8)(x+1)4⇒dydx=8(x2−x−2)(x+1)4⇒dydx=8(x−2)(x+1)(x+1)4formaxormindydx=0⇒x=2,x≠−1d2ydx2>0whenx=2ylocalmin=(2−5)(2−1)(2+1)2=−332=−13=−0.3― Commented by Tony Lin last updated on 14/Feb/20 letx2−6x+5x2+2x+1=k⇒x2−6x+5=kx2+2kx+k⇒(k−1)x2+(2k+6)x+(k−5)=0Δ=(2k+6)2−4(k−1)(k−5)=0⇒k=−13whenx=2x2−6x+5x2+2x+1=−13min Commented by mathmax by abdo last updated on 14/Feb/20 f(x)=x2+2x+1−8x+4x2+2x+1=1+4−8xx2+2x+1⇒f′(x)=−4(2x−1x2+2x+1)(1)=−4(2(x2+2x+1)−(2x−1)(2x+2)(x2+2x+1)2)=−4×2x2+4x+2−4x2−4x+2x+2(x+1)4=−4×−2x2+2x+4(x+1)4=8×x2−x−2(x+1)4sof′(x)=0⇔x2−x−2=0andx≠−1Δ=1−4(−2)=9⇒x1=1+32=2andx2=1−32=−1x−∞−12+∞f′+∣∣−0+fincrdecrf(2)incrinff(x)=f(2)=4−12+54+4+1=−39=−13 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: pi-4-pi-4-e-x-sin-x-dx-Next Next post: If-7-points-out-of-12-are-in-the-same-straight-line-then-the-number-of-triangles-formed-is- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.