Menu Close

If-x-y-1-then-r-0-n-r-2-n-C-r-x-r-y-n-r-equals-




Question Number 56139 by gunawan last updated on 11/Mar/19
If x+y=1, then  Σ_(r=0) ^n  r^2  ^n C_r  x^r  y^(n−r)  equals
$$\mathrm{If}\:{x}+{y}=\mathrm{1},\:\mathrm{then}\:\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{r}^{\mathrm{2}} \:\:^{{n}} {C}_{{r}} \:{x}^{{r}} \:{y}^{{n}−{r}} \:\mathrm{equals} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Mar/19
(y+x)^n =1  nc_0 y^(n−0) x^0 +nc_1 y^(n−1) x^1 +nc_2 y^(n−2) x^2 +...+nc_n y^(n−n) x^n   (y+x)^n =1=Σ_(r=0) ^n nc_r y^(n−r) x^r   wait...pls...
$$\left({y}+{x}\right)^{{n}} =\mathrm{1} \\ $$$${nc}_{\mathrm{0}} {y}^{{n}−\mathrm{0}} {x}^{\mathrm{0}} +{nc}_{\mathrm{1}} {y}^{{n}−\mathrm{1}} {x}^{\mathrm{1}} +{nc}_{\mathrm{2}} {y}^{{n}−\mathrm{2}} {x}^{\mathrm{2}} +…+{nc}_{{n}} {y}^{{n}−{n}} {x}^{{n}} \\ $$$$\left({y}+{x}\right)^{{n}} =\mathrm{1}=\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nc}_{{r}} {y}^{{n}−{r}} {x}^{{r}} \\ $$$${wait}…{pls}… \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *