Question Number 48527 by Pk1167156@gmail.com last updated on 25/Nov/18
$$\mathrm{If}\:\:{xy}\:+\:{yz}\:+\:{zx}\:=\:\mathrm{1},\:\mathrm{then} \\ $$$$\mathrm{tan}^{−\mathrm{1}} {x}\:+\:\mathrm{tan}^{−\mathrm{1}} {y}\:+\:\mathrm{tan}^{−\mathrm{1}} {z}\:=\: \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18
$${tan}^{−\mathrm{1}} {x}+{tan}^{−\mathrm{1}} \left(\frac{{y}+{z}}{\mathrm{1}−{yz}}\right) \\ $$$$={tan}^{−\mathrm{1}} \left(\frac{{x}+\frac{{y}+{z}}{\mathrm{1}−{yz}}}{\mathrm{1}−{x}×\frac{{y}+{z}}{\mathrm{1}−{yz}}}\right) \\ $$$$={tan}^{−\mathrm{1}} \left(\frac{{x}−{xyz}+{y}+{z}}{\mathrm{1}−{yz}−{xy}−{xz}}\right) \\ $$$${tan}^{−\mathrm{1}} \left(\frac{{x}+{y}+{z}−{xyz}}{\mathrm{0}}\right) \\ $$$$={tan}^{−\mathrm{1}} \left(\infty\right) \\ $$$$={tan}^{−\mathrm{1}} \left({tan}\frac{\pi}{\mathrm{2}}\right) \\ $$$$=\frac{\pi}{\mathrm{2}} \\ $$
Answered by ajfour last updated on 25/Nov/18
$$\mathrm{tan}^{−\mathrm{1}} {x}\:=\:\theta\:,\:\mathrm{tan}^{−\mathrm{1}} {y}\:=\:\phi\:,\:\mathrm{tan}^{−\mathrm{1}} {z}\:=\:\psi \\ $$$${let}\:\:\:\delta\:=\:\theta+\phi+\psi \\ $$$$\:\:\:\:\:\:\mathrm{tan}\:\delta\:=\:\mathrm{tan}\:\left(\overline {\theta+\phi}+\psi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{tan}\:\left(\theta+\phi\right)+\mathrm{tan}\:\psi}{\mathrm{1}−\mathrm{tan}\:\left(\theta+\phi\right)\mathrm{tan}\:\psi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\frac{\mathrm{tan}\:\theta+\mathrm{tan}\:\phi}{\mathrm{1}−\mathrm{tan}\:\theta\mathrm{tan}\:\phi}+\mathrm{tan}\:\psi}{\mathrm{1}−\mathrm{tan}\:\left(\theta+\phi\right)\mathrm{tan}\:\psi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\Sigma\mathrm{tan}\:\theta−\Pi\mathrm{tan}\:\theta}{\mathrm{1}−\Sigma\mathrm{tan}\:\theta\:\mathrm{tan}\:\phi} \\ $$$${but}\:\:\Sigma\mathrm{tan}\:\theta\:\mathrm{tan}\:\phi\:=\:\Sigma{xy}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\:\boldsymbol{\delta}\:=\:\theta+\phi+\psi\:=\:\pm\frac{\pi}{\mathrm{2}}\:. \\ $$