Menu Close

Iff-x-determinant-sec-x-cos-x-sec-2-x-cosec-x-cot-x-cos-2-x-cos-2-x-cosec-2-x-1-cos-2-x-cos-2-x-then-0-pi-2-f-x-dx-




Question Number 59170 by 2772639291927 last updated on 05/May/19
Iff(x)= determinant (((sec x),(cos x),(sec^2 x+cosec x cot x)),((cos^2 x),(cos^2 x),(          cosec^2 x)),((   1),(cos^2 x),(          cos^2 x)))  then ∫_( 0) ^(π/2)  f(x) dx =
Iff(x)=|secxcosxsec2x+cosecxcotxcos2xcos2xcosec2x1cos2xcos2x|thenπ/20f(x)dx=
Answered by MJS last updated on 05/May/19
if f(x)=det (above matrix):  f(x)=−((1/(16))cos 5x +(5/(16))cos 3x −(1/2)cos 2x +(5/8)cos x +(1/2))  F(x)=∫f(x)dx=−((1/(80))sin 5x +(5/(48))sin 3x −(1/4)sin 2x +(5/8)sin x +(1/2)x)w  F((π/2))−F(0)=−(π/2)−(8/(15))
iff(x)=det(abovematrix):f(x)=(116cos5x+516cos3x12cos2x+58cosx+12)F(x)=f(x)dx=(180sin5x+548sin3x14sin2x+58sinx+12x)wF(π2)F(0)=π2815

Leave a Reply

Your email address will not be published. Required fields are marked *