Menu Close

In-2x-3y-8-and-5x-Ky-3-find-the-value-of-K-so-that-the-given-system-of-equation-has-infinte-solution-




Question Number 106666 by deep last updated on 06/Aug/20
In 2x+3y=8 and  5x+Ky=3, find the  value of K so that the given system  of equation has infinte solution.
In2x+3y=8and5x+Ky=3,findthevalueofKsothatthegivensystemofequationhasinfintesolution.
Commented by bemath last updated on 06/Aug/20
 (((2      3)),((5      k)) )  ((x),(y) ) =  ((8),(3) )  has no solution if Δ = 0   ⇒2k−15 = 0 , k = ((15)/2)
(235k)(xy)=(83)hasnosolutionifΔ=02k15=0,k=152
Commented by Her_Majesty last updated on 06/Aug/20
yes but “infinite solutions” doesn′t mean  “no solution”
yesbutinfinitesolutionsdoesntmeannosolution
Answered by nimnim last updated on 06/Aug/20
The equations will have infinite solution if  (a_1 /a_2 )=(b_1 /b_2 )=(c_1 /c_2 )   i.e (2/5)=(3/k)=(8/3)⇒1=(5/3)×(3/k)×(3/8)=1  ⇒1=((15)/(8k))=1⇒k=((15)/8)
Theequationswillhaveinfinitesolutionifa1a2=b1b2=c1c2i.e25=3k=831=53×3k×38=11=158k=1k=158
Commented by Her_Majesty last updated on 06/Aug/20
wrong. with k=((15)/8) we get x=−(8/(15))∧y=((136)/(45))  which is a unique solution
wrong.withk=158wegetx=815y=13645whichisauniquesolution
Answered by Her_Majesty last updated on 06/Aug/20
 { ((2x+3y=8)),((5x+Ky=3)) :} ⇔  { ((y=−(2/3)x+(8/3))),((y=−(5/k)x+(3/k))) :}  both are linear ⇒ infinite solutions if  (I) = (II) which is impossible if K∈C:  >  −(2/3)=−(5/K)∧(8/3)=(3/K)  K=((15)/2)∧K=(9/8) which is impossible  if K is not a number  −(2/3)x+(8/3)=−(5/K)x+(3/K)  ⇒  K=((3(5x−3))/(2(x−4)))  ⇒   { ((y=−(2/3)x+(8/3))),((y=−(2/3)x+(8/3))) :}
{2x+3y=85x+Ky=3{y=23x+83y=5kx+3kbotharelinearinfinitesolutionsif(I)=(II)whichisimpossibleifKC:>23=5K83=3KK=152K=98whichisimpossibleifKisnotanumber23x+83=5Kx+3KK=3(5x3)2(x4){y=23x+83y=23x+83

Leave a Reply

Your email address will not be published. Required fields are marked *