Menu Close

In-a-ABC-a-2-sin-2-B-sin-2-C-




Question Number 113848 by deepraj123 last updated on 15/Sep/20
In a △ABC, Σ a^2 (sin^2 B −sin^2 C) =
InaABC,Σa2(sin2Bsin2C)=
Answered by 1549442205PVT last updated on 16/Sep/20
We have Σa^2 (sin^2 B−sin^2 C)=  a^2 (sin^2 B−sin^2 C )+b^2 (sin^2 C−sin^2 A)  +c^2 (sin^2 A−sin^2 B)  From sine theorem we have:  (a/(sinA))=(b/(sinB))=(c/(sinC))=2R⇒a^2 =4R^2 sin^2 A  b^2 =4R^2 sin^2 B,c^2 =4R^2 sim^2 C.Replace into  above equality we get Σa^2 (sin^2 B−sin^2 C)  =4R^2 [sin^2 A(sin^2 B−sin^2 C)+sin^2 B(sin^2 C−sin^2 A)  +sin^2 C(sin^2 A−sin^2 B)].  (Put x=sin^2 A,y=sin^2 B,z=sin^2 C )  =4R^2 [x(y−z)+y(z−x)+z(x−y)]  =4R^2 (xy−xz+yz−yx+zx−zy)=0
WehaveΣa2(sin2Bsin2C)=a2(sin2Bsin2C)+b2(sin2Csin2A)+c2(sin2Asin2B)Fromsinetheoremwehave:asinA=bsinB=csinC=2Ra2=4R2sin2Ab2=4R2sin2B,c2=4R2sim2C.ReplaceintoaboveequalitywegetΣa2(sin2Bsin2C)=4R2[sin2A(sin2Bsin2C)+sin2B(sin2Csin2A)+sin2C(sin2Asin2B)].(Putx=sin2A,y=sin2B,z=sin2C)=4R2[x(yz)+y(zx)+z(xy)]=4R2(xyxz+yzyx+zxzy)=0

Leave a Reply

Your email address will not be published. Required fields are marked *