Menu Close

In-a-triangle-ABC-a-b-cos-C-c-cos-B-




Question Number 90535 by 1223 last updated on 24/Apr/20
In a triangle ABC, a(b cos C−c cos B)=
$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:{ABC},\:{a}\left({b}\:\mathrm{cos}\:{C}−{c}\:\mathrm{cos}\:{B}\right)= \\ $$
Answered by $@ty@m123 last updated on 24/Apr/20
a(b×((a^2 +b^2 −c^2 )/(2ab))−c×((c^2 +a^2 −b^2 )/(2ca)))  a(((a^2 +b^2 −c^2 )/(2a))−((c^2 +a^2 −b^2 )/(2a)))  (1/2)(a^2 +b^2 −c^2 −c^2 −a^2 +b^2 )  (1/2)(2b^2 −2c^2 )  b^2 −c^2
$${a}\left({b}×\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}−{c}×\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ca}}\right) \\ $$$${a}\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{a}}−\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{a}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} −{c}^{\mathrm{2}} −{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} \right) \\ $$$${b}^{\mathrm{2}} −{c}^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *