Menu Close

In-a-triangle-with-one-angle-of-120-the-lengths-of-the-sides-form-an-AP-If-the-length-of-the-greatest-side-is-7-cm-the-area-of-the-triangle-is-




Question Number 43641 by gunawan last updated on 13/Sep/18
In a triangle with one angle of 120°,  the lengths of the sides form an AP.  If  the length of the greatest side is  7 cm., the area of the triangle is
Inatrianglewithoneangleof120°,thelengthsofthesidesformanAP.Ifthelengthofthegreatestsideis7cm.,theareaofthetriangleis
Answered by $@ty@m last updated on 13/Sep/18
Let c>b>a  c^2 =a^2 +b^2 −2abcos C  7^2 =a^2 +b^2 −2abcos 120  49=a^2 +b^2 +ab (∵cos 120=−(1/2))                               ......(1)  ∵ a, b,c are in AP  ∴2b=a+c  ⇒2b=a+7  ⇒a=2b−7 ...(2)  ∴from(1)  49=(2b−7)^2 +b^2 +(2b−7)b  49=4b^2 −28b+49+b^2 +2b^2 −7b  7b^2 −35b=0  7b(b−5)=0  ∴b=5  ⇒a=2×5−7=3  ∴Area of △=(√(s(s−a)(s−b)(s−c)))  =(√(((15)/2)(((15)/2)−3)(((15)/2)−5)(((15)/2)−7)))  =(1/4)×(√(15×9×5×1))  =(1/4)×5×3(√3)  =((15)/4)(√3)  sq. unit
Letc>b>ac2=a2+b22abcosC72=a2+b22abcos12049=a2+b2+ab(cos120=12)(1)a,b,careinAP2b=a+c2b=a+7a=2b7(2)from(1)49=(2b7)2+b2+(2b7)b49=4b228b+49+b2+2b27b7b235b=07b(b5)=0b=5a=2×57=3Areaof=s(sa)(sb)(sc)=152(1523)(1525)(1527)=14×15×9×5×1=14×5×33=1543sq.unit

Leave a Reply

Your email address will not be published. Required fields are marked *