Question Number 113807 by deepraj123 last updated on 15/Sep/20
$$\mathrm{In}\:\mathrm{any}\:\bigtriangleup{ABC},\:\mathrm{if}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{are}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{ratio}\:\mathrm{1}\::\:\mathrm{2}\::\:\mathrm{3},\:\mathrm{then}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of} \\ $$$$\mathrm{corresponding}\:\mathrm{sides}\:\mathrm{is} \\ $$
Answered by bemath last updated on 15/Sep/20
$$\angle{A}\:=\:{k}\:,\angle{B}=\mathrm{2}{k}\:,\angle{C}=\mathrm{3}{k} \\ $$$$\Rightarrow\:\mathrm{6}{k}=\mathrm{180}°\:\rightarrow{k}=\mathrm{30}° \\ $$$$\:\frac{{a}}{\mathrm{sin}\:\mathrm{30}°}=\frac{{b}}{\mathrm{sin}\:\mathrm{60}°}=\frac{{c}}{\mathrm{sin}\:\mathrm{90}°} \\ $$$$\frac{{a}}{\frac{\mathrm{1}}{\mathrm{2}}}=\frac{{b}}{\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{3}}}=\frac{{c}}{\mathrm{1}}\:\rightarrow\:\begin{cases}{{b}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{3}}\:{c}}\\{{a}=\frac{\mathrm{1}}{\mathrm{2}}{c}}\end{cases} \\ $$$${a}\::\:{b}\::\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\::\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{3}}\::\:\mathrm{1}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}\::\:\sqrt{\mathrm{3}}\::\:\mathrm{2} \\ $$$$ \\ $$