Menu Close

Let-1-x-n-r-0-n-C-r-x-r-and-r-0-n-C-r-r-1-k-then-the-value-of-k-is-




Question Number 63942 by gunawan last updated on 11/Jul/19
Let (1+x)^n = Σ_(r=0) ^n  C_r  x^r  and Σ_(r=0) ^n  (C_r /(r+1)) = k,  then the value of k is
Let(1+x)n=nr=0Crxrandnr=0Crr+1=k,thenthevalueofkis
Commented by mathmax by abdo last updated on 11/Jul/19
(1+x)^n  =Σ_(r=0) ^n  C_n ^r  x^r  ⇒C_r =C_n ^r  ⇒  Σ_(r=0) ^n  (C_r /(r+1)) =Σ_(r=0) ^n   (C_n ^r /(r+1))  let p(x) =Σ_(r=0) ^n  (C_n ^r /(r+1)) x^(r+1)  ⇒p^′ (x) =Σ_(r=0) ^n  C_n ^r  x^r   =(x+1)^n  ⇒  p(x)=∫ (x+1)^n dx +c =(1/(n+1))(x+1)^(n+1)  +c  p(0)=0=(1/(n+1)) +c ⇒c=−(1/(n+1)) ⇒p(x) =(((x+1)^(n+1) −1)/(n+1)) ⇒  Σ_(r=0) ^∞  (C_r /(r+1)) =p(1) =((2^(n+1) −1)/(n+1)) ⇒k =((2^(n+1) −1)/(n+1)) .
(1+x)n=r=0nCnrxrCr=Cnrr=0nCrr+1=r=0nCnrr+1letp(x)=r=0nCnrr+1xr+1p(x)=r=0nCnrxr=(x+1)np(x)=(x+1)ndx+c=1n+1(x+1)n+1+cp(0)=0=1n+1+cc=1n+1p(x)=(x+1)n+11n+1r=0Crr+1=p(1)=2n+11n+1k=2n+11n+1.
Answered by mr W last updated on 11/Jul/19
(1+x)^n = Σ_(r=0) ^n  C_r  x^r   ∫_0 ^x (1+x)^n dx= Σ_(r=0) ^n ∫_0 ^x  C_r  x^r dx  (1/(n+1))(1+x)^(n+1) −(1/(n+1))= Σ_(r=0) ^n (1/(r+1)) C_r  x^(r+1)   let x=1:  ((2^(n+1) −1)/(n+1))= Σ_(r=0) ^n (1/(r+1)) C_r =k   ⇒k=((2^(n+1) −1)/(n+1))
(1+x)n=nr=0Crxr0x(1+x)ndx=nr=00xCrxrdx1n+1(1+x)n+11n+1=nr=01r+1Crxr+1letx=1:2n+11n+1=nr=01r+1Cr=kk=2n+11n+1

Leave a Reply

Your email address will not be published. Required fields are marked *