Menu Close

Let-a-b-and-c-form-a-GP-of-common-ratio-r-with-0-lt-r-lt-1-If-a-2b-and-3c-form-an-AP-then-r-equals-




Question Number 56420 by gunawan last updated on 16/Mar/19
Let  a, b and c form a GP of common ratio r,  with  0< r<1. If  a, 2b and 3c form an AP,  then r equals
$$\mathrm{Let}\:\:{a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{form}\:\mathrm{a}\:\mathrm{GP}\:\mathrm{of}\:\mathrm{common}\:\mathrm{ratio}\:{r}, \\ $$$$\mathrm{with}\:\:\mathrm{0}<\:{r}<\mathrm{1}.\:\mathrm{If}\:\:{a},\:\mathrm{2}{b}\:\mathrm{and}\:\mathrm{3}{c}\:\mathrm{form}\:\mathrm{an}\:\mathrm{AP}, \\ $$$$\mathrm{then}\:{r}\:\mathrm{equals} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Mar/19
a=a  b=ar  c=ar^2   2(2b)=a+3c  2(2ar)=a+3(ar^2 )  4r=1+3r^2   3r^2 −3r−r+1=0  3r(r−1)−1(r−1)=0  (r−1)(3r−1)=0  r≠1 [given in question]  r=(1/3)
$${a}={a} \\ $$$${b}={ar} \\ $$$${c}={ar}^{\mathrm{2}} \\ $$$$\mathrm{2}\left(\mathrm{2}{b}\right)={a}+\mathrm{3}{c} \\ $$$$\mathrm{2}\left(\mathrm{2}{ar}\right)={a}+\mathrm{3}\left({ar}^{\mathrm{2}} \right) \\ $$$$\mathrm{4}{r}=\mathrm{1}+\mathrm{3}{r}^{\mathrm{2}} \\ $$$$\mathrm{3}{r}^{\mathrm{2}} −\mathrm{3}{r}−{r}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{3}{r}\left({r}−\mathrm{1}\right)−\mathrm{1}\left({r}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left(\mathrm{3}{r}−\mathrm{1}\right)=\mathrm{0} \\ $$$${r}\neq\mathrm{1}\:\left[{given}\:{in}\:{question}\right] \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *