Menu Close

Let-ABCD-be-a-parallelogram-whose-diagonals-intersect-at-P-and-ley-O-be-the-origin-then-OA-OB-OC-OD-equals-




Question Number 41291 by Mayur last updated on 04/Aug/18
Let ABCD be a parallelogram whose  diagonals intersect at P and ley O be  the origin, then OA^(→) +OB^(→) +OC^(→) +OD^(→)    equals
$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{parallelogram}\:\mathrm{whose} \\ $$$$\mathrm{diagonals}\:\mathrm{intersect}\:\mathrm{at}\:{P}\:\mathrm{and}\:\mathrm{ley}\:{O}\:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{origin},\:\mathrm{then}\:\overset{\rightarrow} {{OA}}+\overset{\rightarrow} {{OB}}+\overset{\rightarrow} {{OC}}+\overset{\rightarrow} {{OD}}\: \\ $$$$\mathrm{equals} \\ $$
Answered by MJS last updated on 04/Aug/18
4OP^(⇀)
$$\mathrm{4}\overset{\rightharpoonup} {{OP}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18
          OA^→ +AP^→ =OP^→   OB^→ +BP^→ =OP^→   OC^→ −PC^→ =OP^→    OD^→ −PD^→ =OP^→     now add them  OA^→ +OB^→ +OC^→ +OD^→ +(AP^→ −PC^→ )+(BP^→ −PD^→ )=4OP^→   OA^→ +OB^→ +OC^→ +OD^→ =4OP^→     1.( since  OP^→ +PD^→ =OD)  2.∣AP^→ ∣=∣PC^→ ∣  3.∣B^→ P∣=∣PD^→ ∣    dioagonal bisect each other
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${O}\overset{\rightarrow} {{A}}+{A}\overset{\rightarrow} {{P}}={O}\overset{\rightarrow} {{P}} \\ $$$${O}\overset{\rightarrow} {{B}}+{B}\overset{\rightarrow} {{P}}={O}\overset{\rightarrow} {{P}} \\ $$$${O}\overset{\rightarrow} {{C}}−{P}\overset{\rightarrow} {{C}}={O}\overset{\rightarrow} {{P}}\: \\ $$$${O}\overset{\rightarrow} {{D}}−{P}\overset{\rightarrow} {{D}}={O}\overset{\rightarrow} {{P}}\:\: \\ $$$${now}\:{add}\:{them} \\ $$$${O}\overset{\rightarrow} {{A}}+{O}\overset{\rightarrow} {{B}}+{O}\overset{\rightarrow} {{C}}+{O}\overset{\rightarrow} {{D}}+\left({A}\overset{\rightarrow} {{P}}−{P}\overset{\rightarrow} {{C}}\right)+\left({B}\overset{\rightarrow} {{P}}−{P}\overset{\rightarrow} {{D}}\right)=\mathrm{4}{O}\overset{\rightarrow} {{P}} \\ $$$${O}\overset{\rightarrow} {{A}}+{O}\overset{\rightarrow} {{B}}+{O}\overset{\rightarrow} {{C}}+{O}\overset{\rightarrow} {{D}}=\mathrm{4}{O}\overset{\rightarrow} {{P}} \\ $$$$ \\ $$$$\mathrm{1}.\left(\:{since}\:\:{O}\overset{\rightarrow} {{P}}+{P}\overset{\rightarrow} {{D}}={OD}\right) \\ $$$$\mathrm{2}.\mid{A}\overset{\rightarrow} {{P}}\mid=\mid{P}\overset{\rightarrow} {{C}}\mid \\ $$$$\mathrm{3}.\mid\overset{\rightarrow} {{B}P}\mid=\mid{P}\overset{\rightarrow} {{D}}\mid\:\:\:\:{dioagonal}\:{bisect}\:{each}\:{other}\: \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18

Leave a Reply

Your email address will not be published. Required fields are marked *