Menu Close

Let-ABCD-be-a-parallelogram-whose-diagonals-intersect-at-P-and-ley-O-be-the-origin-then-OA-OB-OC-OD-equals-




Question Number 41291 by Mayur last updated on 04/Aug/18
Let ABCD be a parallelogram whose  diagonals intersect at P and ley O be  the origin, then OA^(→) +OB^(→) +OC^(→) +OD^(→)    equals
LetABCDbeaparallelogramwhosediagonalsintersectatPandleyObetheorigin,thenOA+OB+OC+ODequals
Answered by MJS last updated on 04/Aug/18
4OP^(⇀)
4OP
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18
          OA^→ +AP^→ =OP^→   OB^→ +BP^→ =OP^→   OC^→ −PC^→ =OP^→    OD^→ −PD^→ =OP^→     now add them  OA^→ +OB^→ +OC^→ +OD^→ +(AP^→ −PC^→ )+(BP^→ −PD^→ )=4OP^→   OA^→ +OB^→ +OC^→ +OD^→ =4OP^→     1.( since  OP^→ +PD^→ =OD)  2.∣AP^→ ∣=∣PC^→ ∣  3.∣B^→ P∣=∣PD^→ ∣    dioagonal bisect each other
OA+AP=OPOB+BP=OPOCPC=OPODPD=OPnowaddthemOA+OB+OC+OD+(APPC)+(BPPD)=4OPOA+OB+OC+OD=4OP1.(sinceOP+PD=OD)2.AP∣=∣PC3.BP∣=∣PDdioagonalbisecteachother
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18

Leave a Reply

Your email address will not be published. Required fields are marked *