Menu Close

Let-I-1-1-2-1-1-x-2-dx-and-I-2-1-2-1-x-dx-Then-




Question Number 44034 by Dilshad786 last updated on 20/Sep/18
Let  I_1 = ∫_( 1) ^2   (1/( (√(1+x^2 )))) dx and I_2 = ∫_( 1) ^2  (1/x) dx.  Then
$$\mathrm{Let}\:\:{I}_{\mathrm{1}} =\:\underset{\:\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx}\:\mathrm{and}\:{I}_{\mathrm{2}} =\:\underset{\:\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\frac{\mathrm{1}}{{x}}\:{dx}. \\ $$$$\mathrm{Then} \\ $$
Commented by maxmathsup by imad last updated on 20/Sep/18
I_1 =[ln(x+(√(1+x^2 ))]_1 ^2  =ln(2+(√5))−ln(1+(√2))  and   I_2 =[ln∣x∣]_1 ^2 =ln(2) .
$${I}_{\mathrm{1}} =\left[{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right]_{\mathrm{1}} ^{\mathrm{2}} \:={ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:\:{and}\:\right. \\ $$$${I}_{\mathrm{2}} =\left[{ln}\mid{x}\mid\right]_{\mathrm{1}} ^{\mathrm{2}} ={ln}\left(\mathrm{2}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *