Menu Close

Let-I-n-0-pi-4-tan-n-x-dx-n-gt-1-and-n-N-then-




Question Number 53696 by gunawan last updated on 25/Jan/19
Let I_n =∫_( 0) ^(π/4)  tan^n x dx, (n>1 and n∈N), then
LetIn=π/40tannxdx,(n>1andnN),then
Commented by Abdo msup. last updated on 25/Jan/19
sir this integral is solved see the platform...
sirthisintegralissolvedseetheplatform
Commented by gunawan last updated on 25/Jan/19
thank you Sir  I don′t know this integral is solved
thankyouSirIdontknowthisintegralissolved
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
J_n =∫tan^(n−2) xtan^2 xdx  j_n .=∫tan^(n−2) x(sec^2 x−1)dx  =∫tan^(n−2) xd(tanx)−∫tan^(n−2) xdx  j_n =(((tan^(n−2+1) x))/(n−2+1))−j_(n−2)   so  I_n =∣((tan^(n−1) x)/(n−1))∣_0 ^(π/4) −I_(n−2)   I_n =(1/(n−1))−I_(n−2) ←reduction formula  I_(n−2) =(1/(n−3))−I_(n−4)   I_(n−4) =(1/(n−5 ))−I_(n−6 )   .....  .....  I_2 =(1/(2−1))−I_0      now I_0 =∫_0 ^(π/4) (tanx)^0 dx=∣x∣_0 ^(π/4) =(π/4)  now I_2 .=(1/(2−1))−(π/4).=(1/1)−(π/4)
Jn=tann2xtan2xdxjn.=tann2x(sec2x1)dx=tann2xd(tanx)tann2xdxjn=(tann2+1x)n2+1jn2soIn=∣tann1xn10π4In2In=1n1In2reductionformulaIn2=1n3In4In4=1n5In6....I2=121I0nowI0=0π4(tanx)0dx=∣x0π4=π4nowI2.=121π4.=11π4
Commented by peter frank last updated on 25/Jan/19
nice work sir
niceworksir
Answered by peter frank last updated on 25/Jan/19
its reduction formular  I_n =∫tan^n xdx  I_(n ) =∫tan^n xtan^2 xdx  I_(n ) =∫tan^n xsec^2 xdx−∫tan^n xdx  by part  v=tan x  (du/dx)=sec^2 x  I_n =((v^(n−1) x)/(n−1))−I_(n−2)   I_n =((tan^(n−1) )/(n−1))−I_(n−2)   n≥2
itsreductionformularIn=tannxdxIn=tannxtan2xdxIn=tannxsec2xdxtannxdxbypartv=tanxdudx=sec2xIn=vn1xn1In2In=tann1n1In2n2

Leave a Reply

Your email address will not be published. Required fields are marked *