Menu Close

Let-I-n-0-pi-4-tan-n-x-dx-n-gt-1-and-n-N-then-




Question Number 53696 by gunawan last updated on 25/Jan/19
Let I_n =∫_( 0) ^(π/4)  tan^n x dx, (n>1 and n∈N), then
$$\mathrm{Let}\:{I}_{{n}} =\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\mathrm{tan}^{{n}} {x}\:{dx},\:\left({n}>\mathrm{1}\:\mathrm{and}\:{n}\in{N}\right),\:\mathrm{then} \\ $$
Commented by Abdo msup. last updated on 25/Jan/19
sir this integral is solved see the platform...
$${sir}\:{this}\:{integral}\:{is}\:{solved}\:{see}\:{the}\:{platform}… \\ $$
Commented by gunawan last updated on 25/Jan/19
thank you Sir  I don′t know this integral is solved
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{solved} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
J_n =∫tan^(n−2) xtan^2 xdx  j_n .=∫tan^(n−2) x(sec^2 x−1)dx  =∫tan^(n−2) xd(tanx)−∫tan^(n−2) xdx  j_n =(((tan^(n−2+1) x))/(n−2+1))−j_(n−2)   so  I_n =∣((tan^(n−1) x)/(n−1))∣_0 ^(π/4) −I_(n−2)   I_n =(1/(n−1))−I_(n−2) ←reduction formula  I_(n−2) =(1/(n−3))−I_(n−4)   I_(n−4) =(1/(n−5 ))−I_(n−6 )   .....  .....  I_2 =(1/(2−1))−I_0      now I_0 =∫_0 ^(π/4) (tanx)^0 dx=∣x∣_0 ^(π/4) =(π/4)  now I_2 .=(1/(2−1))−(π/4).=(1/1)−(π/4)
$${J}_{{n}} =\int{tan}^{{n}−\mathrm{2}} {xtan}^{\mathrm{2}} {xdx} \\ $$$${j}_{{n}} .=\int{tan}^{{n}−\mathrm{2}} {x}\left({sec}^{\mathrm{2}} {x}−\mathrm{1}\right){dx} \\ $$$$=\int{tan}^{{n}−\mathrm{2}} {xd}\left({tanx}\right)−\int{tan}^{{n}−\mathrm{2}} {xdx} \\ $$$${j}_{{n}} =\frac{\left({tan}^{{n}−\mathrm{2}+\mathrm{1}} {x}\right)}{{n}−\mathrm{2}+\mathrm{1}}−{j}_{{n}−\mathrm{2}} \\ $$$${so} \\ $$$${I}_{{n}} =\mid\frac{{tan}^{{n}−\mathrm{1}} {x}}{{n}−\mathrm{1}}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} −{I}_{{n}−\mathrm{2}} \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \leftarrow{reduction}\:{formula} \\ $$$${I}_{{n}−\mathrm{2}} =\frac{\mathrm{1}}{{n}−\mathrm{3}}−{I}_{{n}−\mathrm{4}} \\ $$$${I}_{{n}−\mathrm{4}} =\frac{\mathrm{1}}{{n}−\mathrm{5}\:}−{I}_{{n}−\mathrm{6}\:} \\ $$$$….. \\ $$$$….. \\ $$$${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}−\mathrm{1}}−{I}_{\mathrm{0}} \\ $$$$\:\:\:{now}\:{I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left({tanx}\right)^{\mathrm{0}} {dx}=\mid{x}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} =\frac{\pi}{\mathrm{4}} \\ $$$${now}\:{I}_{\mathrm{2}} .=\frac{\mathrm{1}}{\mathrm{2}−\mathrm{1}}−\frac{\pi}{\mathrm{4}}.=\frac{\mathrm{1}}{\mathrm{1}}−\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$$$ \\ $$
Commented by peter frank last updated on 25/Jan/19
nice work sir
$${nice}\:{work}\:{sir} \\ $$
Answered by peter frank last updated on 25/Jan/19
its reduction formular  I_n =∫tan^n xdx  I_(n ) =∫tan^n xtan^2 xdx  I_(n ) =∫tan^n xsec^2 xdx−∫tan^n xdx  by part  v=tan x  (du/dx)=sec^2 x  I_n =((v^(n−1) x)/(n−1))−I_(n−2)   I_n =((tan^(n−1) )/(n−1))−I_(n−2)   n≥2
$${its}\:{reduction}\:{formular} \\ $$$${I}_{{n}} =\int{tan}^{{n}} {xdx} \\ $$$${I}_{{n}\:} =\int{tan}^{{n}} {x}\mathrm{tan}\:^{\mathrm{2}} {xdx} \\ $$$${I}_{{n}\:} =\int{tan}^{{n}} {x}\mathrm{sec}\:^{\mathrm{2}} {xdx}−\int\mathrm{tan}\:^{{n}} {xdx} \\ $$$${by}\:{part} \\ $$$${v}=\mathrm{tan}\:{x} \\ $$$$\frac{{du}}{{dx}}=\mathrm{sec}\:^{\mathrm{2}} {x} \\ $$$${I}_{{n}} =\frac{{v}^{{n}−\mathrm{1}} {x}}{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \\ $$$${I}_{{n}} =\frac{\mathrm{tan}\:^{{n}−\mathrm{1}} }{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \\ $$$${n}\geqslant\mathrm{2} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *