Menu Close

Let-p-q-r-be-three-mutually-perpendicular-vectors-of-the-same-magnitude-If-a-vector-x-satisfies-the-equation-p-x-q-p-q-x-r-q-r-x-p-r-0-then-x-is-given-by-




Question Number 19262 by djatmiko last updated on 08/Aug/17
Let p, q, r be three mutually perpendicular  vectors of the same magnitude. If a vector  x  satisfies the equation   p ×{x−q)×p}+q×{x−r)×q}                   +  r×{x−p)×r}=0, then x is  given by
$$\mathrm{Let}\:\boldsymbol{\mathrm{p}},\:\boldsymbol{\mathrm{q}},\:\boldsymbol{\mathrm{r}}\:\mathrm{be}\:\mathrm{three}\:\mathrm{mutually}\:\mathrm{perpendicular} \\ $$$$\mathrm{vectors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{magnitude}.\:\mathrm{If}\:\mathrm{a}\:\mathrm{vector} \\ $$$$\boldsymbol{\mathrm{x}}\:\:\mathrm{satisfies}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\left.\boldsymbol{\mathrm{p}}\left.\:×\left\{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{q}}\right)×\boldsymbol{\mathrm{p}}\right\}+\boldsymbol{\mathrm{q}}×\left\{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{r}}\right)×\boldsymbol{\mathrm{q}}\right\} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\boldsymbol{\mathrm{r}}×\left\{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{p}}\right)×\boldsymbol{\mathrm{r}}\right\}=\mathrm{0},\:\mathrm{then}\:\boldsymbol{\mathrm{x}}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by} \\ $$
Answered by ajfour last updated on 08/Aug/17
= (p^� .p^� )(x^� −q^� )−[p^� .(x^� −q^� )]p^� +       (q^� .q^� )(x^� −r^� )−[q^� .(x^� −r^� )]q^� +       (r^� .r^� )(x^� −p^� )−[r^� .(x^� −p^� )]r^�   = (p^2 +q^2 +r^2 )x^� −[(p^� .x^� )p^� +(q^� .x^� )q^� +(r^� .x^� )r^� ]       −(p^2 +q^2 +r^2 )(p^� +q^� +r^� )+        (p^� .q^� )p^� +(q^� .r^� )q^� +(r^� .p^� )r^� =0   p^� , q^� , and r^�  are mutually ⊥,  and of equal magnitudes ;let  their manitudes be a.  ⇒3a^2 [x^� −(p^� +q^� +r^� )]=a(x_p p^� +x_q q^� +x_r r^� )  ⇒ 3a^2 [x^� −(p^� +q^� +r^� )]=a^2 (x^� )  ⇒  x^� =(3/2)(p^� +q^� +r^� ) .
$$=\:\left(\bar {\mathrm{p}}.\bar {\mathrm{p}}\right)\left(\bar {\mathrm{x}}−\bar {\mathrm{q}}\right)−\left[\bar {\mathrm{p}}.\left(\bar {\mathrm{x}}−\bar {\mathrm{q}}\right)\right]\bar {\mathrm{p}}+ \\ $$$$\:\:\:\:\:\left(\bar {\mathrm{q}}.\bar {\mathrm{q}}\right)\left(\bar {\mathrm{x}}−\bar {\mathrm{r}}\right)−\left[\bar {\mathrm{q}}.\left(\bar {\mathrm{x}}−\bar {\mathrm{r}}\right)\right]\bar {\mathrm{q}}+ \\ $$$$\:\:\:\:\:\left(\bar {\mathrm{r}}.\bar {\mathrm{r}}\right)\left(\bar {\mathrm{x}}−\bar {\mathrm{p}}\right)−\left[\bar {\mathrm{r}}.\left(\bar {\mathrm{x}}−\bar {\mathrm{p}}\right)\right]\bar {\mathrm{r}} \\ $$$$=\:\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right)\bar {\mathrm{x}}−\left[\left(\bar {\mathrm{p}}.\bar {\mathrm{x}}\right)\bar {\mathrm{p}}+\left(\bar {\mathrm{q}}.\bar {\mathrm{x}}\right)\bar {\mathrm{q}}+\left(\bar {\mathrm{r}}.\bar {\mathrm{x}}\right)\bar {\mathrm{r}}\right] \\ $$$$\:\:\:\:\:−\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right)\left(\bar {\mathrm{p}}+\bar {\mathrm{q}}+\bar {\mathrm{r}}\right)+ \\ $$$$\:\:\:\:\:\:\left(\bar {\mathrm{p}}.\bar {\mathrm{q}}\right)\bar {\mathrm{p}}+\left(\bar {\mathrm{q}}.\bar {\mathrm{r}}\right)\bar {\mathrm{q}}+\left(\bar {\mathrm{r}}.\bar {\mathrm{p}}\right)\bar {\mathrm{r}}=\mathrm{0} \\ $$$$\:\bar {\mathrm{p}},\:\bar {\mathrm{q}},\:\mathrm{and}\:\bar {\mathrm{r}}\:\mathrm{are}\:\mathrm{mutually}\:\bot, \\ $$$$\mathrm{and}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitudes}\:;\mathrm{let} \\ $$$$\mathrm{their}\:\mathrm{manitudes}\:\mathrm{be}\:\mathrm{a}. \\ $$$$\Rightarrow\mathrm{3a}^{\mathrm{2}} \left[\bar {\mathrm{x}}−\left(\bar {\mathrm{p}}+\bar {\mathrm{q}}+\bar {\mathrm{r}}\right)\right]=\mathrm{a}\left(\mathrm{x}_{\mathrm{p}} \bar {\mathrm{p}}+\mathrm{x}_{\mathrm{q}} \bar {\mathrm{q}}+\mathrm{x}_{\mathrm{r}} \bar {\mathrm{r}}\right) \\ $$$$\Rightarrow\:\mathrm{3a}^{\mathrm{2}} \left[\bar {\mathrm{x}}−\left(\bar {\mathrm{p}}+\bar {\mathrm{q}}+\bar {\mathrm{r}}\right)\right]=\mathrm{a}^{\mathrm{2}} \left(\bar {\mathrm{x}}\right) \\ $$$$\Rightarrow\:\:\bar {\mathrm{x}}=\frac{\mathrm{3}}{\mathrm{2}}\left(\bar {\mathrm{p}}+\bar {\mathrm{q}}+\bar {\mathrm{r}}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *