Menu Close

Let-S-0-pi-denote-the-set-of-values-of-x-satisfying-the-equation-8-1-cos-x-cos-2-x-cos-3-x-to-4-3-then-S-




Question Number 27203 by julli deswal last updated on 03/Jan/18
Let S ⊂ (0, π) denote the set of values of x  satisfying the equation  8^(1+∣cos x∣+cos^2 x+∣cos^3 x∣+... to ∞) = 4^3   then S =
$$\mathrm{Let}\:{S}\:\subset\:\left(\mathrm{0},\:\pi\right)\:\mathrm{denote}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{8}^{\mathrm{1}+\mid\mathrm{cos}\:{x}\mid+\mathrm{cos}^{\mathrm{2}} {x}+\mid\mathrm{cos}^{\mathrm{3}} {x}\mid+…\:\mathrm{to}\:\infty} =\:\mathrm{4}^{\mathrm{3}} \\ $$$$\mathrm{then}\:{S}\:=\: \\ $$
Answered by Tinkutara last updated on 03/Jan/18
8^(1/(1−∣cos x∣)) =8^2   1−∣cos x∣=(1/2)  cos x=±(1/2)  S={(π/3),((2π)/3)}
$$\mathrm{8}^{\frac{\mathrm{1}}{\mathrm{1}−\mid\mathrm{cos}\:{x}\mid}} =\mathrm{8}^{\mathrm{2}} \\ $$$$\mathrm{1}−\mid\mathrm{cos}\:{x}\mid=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:{x}=\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${S}=\left\{\frac{\pi}{\mathrm{3}},\frac{\mathrm{2}\pi}{\mathrm{3}}\right\} \\ $$
Answered by mrW1 last updated on 03/Jan/18
4^3 =8^2   let t=∣cos x∣  1+t+t^2 +t^3 +....=(1/(1−t))=2  ⇒t=(1/2)  ⇒cos x=±(1/2)  ⇒x=(π/3) or  ((2π)/3)  ⇒S={(π/3) ,((2π)/3)}
$$\mathrm{4}^{\mathrm{3}} =\mathrm{8}^{\mathrm{2}} \\ $$$${let}\:{t}=\mid\mathrm{cos}\:{x}\mid \\ $$$$\mathrm{1}+{t}+{t}^{\mathrm{2}} +{t}^{\mathrm{3}} +….=\frac{\mathrm{1}}{\mathrm{1}−{t}}=\mathrm{2} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{cos}\:{x}=\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{\pi}{\mathrm{3}}\:{or}\:\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\Rightarrow{S}=\left\{\frac{\pi}{\mathrm{3}}\:,\frac{\mathrm{2}\pi}{\mathrm{3}}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *