Menu Close

Let-S-n-1-1-3-1-2-1-3-2-3-1-2-n-1-3-2-3-n-3-n-1-2-3-Then-S-n-is-greater-than-




Question Number 27604 by 0722136841 last updated on 10/Jan/18
Let   S_n =(1/1^3 ) + ((1+2)/(1^3 +2^3 )) +...+((1+2+...+n)/(1^3 +2^3 +...+n^3 )); n=1,2,3,..  Then S_n  is greater than
LetSn=113+1+213+23++1+2++n13+23++n3;n=1,2,3,..ThenSnisgreaterthan
Commented by abdo imad last updated on 11/Jan/18
S_n = Σ_(k=1) ^n  ((Σ_(p=1) ^k  p)/(Σ_(p=1) ^k p^3 ))   let simplify  S_n   we know that  Σ_(p=1) ^k p=((k(k+1))/2)  and  Σ_(p=1) ^k p^3  =(((k(k+1))/2))^2   S_n = Σ_(k=1) ^n  (2/(k(k+1)))= 2 Σ_(k=1) ^n ( (1/k) −(1/(k+1)))  S_n = 2( 1−(1/2) +(1/2) −(1/3) +... +(1/n) −(1/(n+1)))= 2(1−(1/(n+1)))  = ((2n)/(n+1))   but    n+1< 2n for all n>1 ⇒ (1/(n+1))>(1/(2n))  ⇒  ((2n)/(n+1)) >(1/2) ⇒    S_n > (1/2)   and also we have    (1/2)< S_n  <2  and lim_(n−>∝) S_n = 2
Sn=k=1np=1kpp=1kp3letsimplifySnweknowthatp=1kp=k(k+1)2andp=1kp3=(k(k+1)2)2Sn=k=1n2k(k+1)=2k=1n(1k1k+1)Sn=2(112+1213++1n1n+1)=2(11n+1)=2nn+1butn+1<2nforalln>11n+1>12n2nn+1>12Sn>12andalsowehave12<Sn<2andlimn>∝Sn=2

Leave a Reply

Your email address will not be published. Required fields are marked *