Menu Close

Let-S-n-denote-the-sum-of-first-n-terms-of-an-AP-If-S-2n-3-S-n-then-the-ratio-S-3n-S-n-is-equal-to-




Question Number 46918 by 786786AM last updated on 02/Nov/18
Let S_n  denote the sum of first n terms of  an AP. If   S_(2n) = 3 S_n  , then the ratio  (S_(3n) /S_n )   is equal to
LetSndenotethesumoffirstntermsofanAP.IfS2n=3Sn,thentheratioS3nSnisequalto
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Nov/18
(s_(2n) /s_n )=((((2n)/2)[2a+(2n−1)d])/((n/2)[2a+(n−1)d]))=3  4a+(4n−2)d=6a+(3n−3)d  d(4n−2−3n+3)=2a  a=(((n+1)d)/2)  (s_(3n) /s_n )=((((3n)/2)[2a+(3n−1)d])/((n/2)[2a+(n−1)d]))  =((3[(n+1)d+(3n−1)d])/([(n+1)d+(n−1)d]))  =3×((d(n+1+3n−1))/(d(n+1+n−1)))  =3×((4n)/(2n))=6
s2nsn=2n2[2a+(2n1)d]n2[2a+(n1)d]=34a+(4n2)d=6a+(3n3)dd(4n23n+3)=2aa=(n+1)d2s3nsn=3n2[2a+(3n1)d]n2[2a+(n1)d]=3[(n+1)d+(3n1)d][(n+1)d+(n1)d]=3×d(n+1+3n1)d(n+1+n1)=3×4n2n=6

Leave a Reply

Your email address will not be published. Required fields are marked *