Menu Close

Let-z-1-and-z-2-be-two-roots-of-the-equation-z-2-az-b-0-z-being-complex-Further-assume-that-the-origin-z-1-and-z-2-form-an-equilateral-triangle-Then-




Question Number 25075 by Mr easy last updated on 03/Dec/17
Let z_1 and z_2  be two roots of the equation  z^2 +az+b=0, z being complex. Further  assume that the origin, z_1  and z_2  form  an equilateral triangle. Then,
$$\mathrm{Let}\:{z}_{\mathrm{1}} \mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{be}\:\mathrm{two}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$${z}^{\mathrm{2}} +{az}+{b}=\mathrm{0},\:{z}\:\mathrm{being}\:\mathrm{complex}.\:\mathrm{Further} \\ $$$$\mathrm{assume}\:\mathrm{that}\:\mathrm{the}\:\mathrm{origin},\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{form} \\ $$$$\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}.\:\mathrm{Then}, \\ $$
Answered by ajfour last updated on 03/Dec/17
z_2 =z_1 e^(±i(π/3))  and  z_1 z_2 =b  z_1 +z_2 =−a  ⇒  z_2 ^3 =−z_1 ^3   or   (z_1 +z_2 )[(z_1 +z_2 )^2 −3z_1 z_2 ]=0  ⇒   −a[a^2 −3b]=0  ⇒     a=0    or  a^2 =3b .
$${z}_{\mathrm{2}} ={z}_{\mathrm{1}} {e}^{\pm{i}\frac{\pi}{\mathrm{3}}} \:{and}\:\:{z}_{\mathrm{1}} {z}_{\mathrm{2}} ={b} \\ $$$${z}_{\mathrm{1}} +{z}_{\mathrm{2}} =−{a} \\ $$$$\Rightarrow\:\:{z}_{\mathrm{2}} ^{\mathrm{3}} =−{z}_{\mathrm{1}} ^{\mathrm{3}} \\ $$$${or}\:\:\:\left({z}_{\mathrm{1}} +{z}_{\mathrm{2}} \right)\left[\left({z}_{\mathrm{1}} +{z}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{3}{z}_{\mathrm{1}} {z}_{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\Rightarrow\:\:\:−{a}\left[{a}^{\mathrm{2}} −\mathrm{3}{b}\right]=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\:{a}=\mathrm{0}\:\:\:\:{or}\:\:{a}^{\mathrm{2}} =\mathrm{3}{b}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *