Menu Close

lim-n-n-1-n-n-




Question Number 26770 by julli deswal last updated on 29/Dec/17
lim_(n→∞)  (((n !)^(1/n) )/n) =
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left({n}\:!\right)^{\mathrm{1}/{n}} }{{n}}\:= \\ $$
Commented by abdo imad last updated on 29/Dec/17
n!∼ n^n  e^(−n)  (√(2πn)) (stirling formula)⇒ (n!)^(1/n) ∼  n e^(−1) (2πn)^(1/(2n))   ⇒   (((n!)^(1/n) )/n)  ∼  e^(−1)  e_ ^( (1/(2n)) ln(2πn))  but    lim _(n−>∝)  ((ln(2πn))/(2n))=0  and lim_(n−>∝) e^((ln(2πn))/(2n))   =1⇒   lim_(n−>∝)   (((n!)^(1/n) )/n)  = (1/e)
$${n}!\sim\:{n}^{{n}} \:{e}^{−{n}} \:\sqrt{\mathrm{2}\pi{n}}\:\left({stirling}\:{formula}\right)\Rightarrow\:\left({n}!\right)^{\frac{\mathrm{1}}{{n}}} \sim\:\:{n}\:{e}^{−\mathrm{1}} \left(\mathrm{2}\pi{n}\right)^{\frac{\mathrm{1}}{\mathrm{2}{n}}} \\ $$$$\Rightarrow\:\:\:\frac{\left({n}!\right)^{\frac{\mathrm{1}}{{n}}} }{{n}}\:\:\sim\:\:{e}^{−\mathrm{1}} \:\overset{\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:{ln}\left(\mathrm{2}\pi{n}\right)} {{e}}_{} \:{but}\:\:\:\:{lim}\:_{{n}−>\propto} \:\frac{{ln}\left(\mathrm{2}\pi{n}\right)}{\mathrm{2}{n}}=\mathrm{0} \\ $$$${and}\:{lim}_{{n}−>\propto} {e}^{\frac{{ln}\left(\mathrm{2}\pi{n}\right)}{\mathrm{2}{n}}} \:\:=\mathrm{1}\Rightarrow\:\:\:{lim}_{{n}−>\propto} \:\:\frac{\left({n}!\right)^{\frac{\mathrm{1}}{{n}}} }{{n}}\:\:=\:\frac{\mathrm{1}}{{e}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *