Menu Close

lim-n-r-1-n-r-3-r-4-n-4-




Question Number 55776 by gunawan last updated on 04/Mar/19
lim_(n→∞)   Σ_(r=1) ^n  ((r^3 /(r^4 +n^4 ))) =
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:\left(\frac{{r}^{\mathrm{3}} }{{r}^{\mathrm{4}} +{n}^{\mathrm{4}} }\right)\:= \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
lim_(n→∞)  Σ_(r=1) ^n (1/n){((((r/n))^3 )/(1+((r/n))^4 ))}  ∫_0 ^1 (x^3 /(1+x^4 ))dx  (1/4)∫_0 ^1 ((d(1+x^4 ))/(1+x^4 ))  (1/4)×∣ln(1+x^4 )∣_0 ^1   (1/4)ln2
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{n}}\left\{\frac{\left(\frac{{r}}{{n}}\right)^{\mathrm{3}} }{\mathrm{1}+\left(\frac{{r}}{{n}}\right)^{\mathrm{4}} }\right\} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{d}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}×\mid{ln}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}{ln}\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *