Question Number 193439 by Nimnim111118 last updated on 14/Jun/23
$$\underset{\:\:\mathrm{0}} {\int}^{\pi/\mathrm{2}} \frac{\sqrt[{\mathrm{3}}]{{tanx}}}{\left({sinx}+{cosx}\right)^{\mathrm{2}} }{dx} \\ $$
Commented by Nimnim111118 last updated on 14/Jun/23
$${help}… \\ $$
Commented by Frix last updated on 14/Jun/23
$$\mathrm{Use}\:{t}=\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}} \\ $$$$\Rightarrow \\ $$$$\mathrm{3}\int\frac{{t}^{\mathrm{3}} }{\left({t}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\mathrm{Now}\:\mathrm{decompose}\:\mathrm{etc} \\ $$$$\mathrm{I}\:\mathrm{get}\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{9}}\pi \\ $$
Answered by MM42 last updated on 14/Jun/23
$${I}=\int\:\frac{\sqrt[{\mathrm{3}}]{{tanx}}}{\left({sinx}+{cosx}\right)^{\mathrm{2}} }{dx}=\int\frac{\sqrt[{\mathrm{3}}]{{tanx}}}{\mathrm{1}+{sin}\mathrm{2}{x}}{dx}= \\ $$$$\int\frac{\sqrt[{\mathrm{3}}]{{tanx}}}{\left(\mathrm{1}+{tanx}\right)^{\mathrm{2}} }\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx}\:\:\:\:;\:\:{let}\::\:{tanx}={u}^{\mathrm{3}} \Rightarrow\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx}=\mathrm{3}{u}^{\mathrm{2}} {du} \\ $$$${x}\rightarrow\mathrm{0}\Rightarrow{u}\rightarrow\mathrm{0}\:\:\:\&\:\:{x}\rightarrow\frac{\pi}{\mathrm{2}}\Rightarrow{u}\rightarrow\infty \\ $$$$\Rightarrow{I}=\int\frac{\mathrm{3}{u}^{\mathrm{3}} }{\left(\mathrm{1}+{u}^{\mathrm{3}} \right)^{\mathrm{2}} }\:{du} \\ $$$$\int\frac{{u}^{\mathrm{3}} }{\left(\mathrm{1}+{u}^{\mathrm{3}} \right)}\:{du}\:=\:\frac{{au}^{\mathrm{2}} +{bu}+{c}}{\mathrm{1}+{u}^{\mathrm{3}} }\:+\:\int\:\:\frac{{a}^{'} {u}^{\mathrm{2}} +{b}'{u}+{c}'}{\mathrm{1}+{u}^{\mathrm{3}} }\:{du}\:\:\:\left({ostrohrdsky}\right) \\ $$$$=−\frac{\mathrm{2}}{\mathrm{3}}×\frac{{u}}{{u}^{\mathrm{3}} +\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{3}}\int\:\frac{{du}}{{u}^{\mathrm{3}} +\mathrm{1}}\: \\ $$$$\int\:\frac{{du}}{{u}^{\mathrm{3}} +\mathrm{1}}\:=\int\:\left(\frac{{a}}{{u}+\mathrm{1}}+\frac{{bu}+{c}}{{u}^{\mathrm{2}} −{u}+\mathrm{1}}\right){du}\:\:\left(\:{decomposition}\:{of}\:{fraction}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int\:\left(\frac{\mathrm{1}}{{u}+\mathrm{1}}−\frac{{u}−\mathrm{2}}{{u}^{\mathrm{2}} −{u}+\mathrm{1}}\right){du} \\ $$$$\Rightarrow{I}=−\frac{\mathrm{1}}{\mathrm{3}}×\frac{{u}}{{u}^{\mathrm{3}} +\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{9}}×\int\:\left(\frac{\mathrm{1}}{{u}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}{u}−\mathrm{1}−\mathrm{3}}{{u}^{\mathrm{2}} −{u}+\mathrm{1}}\right){du}= \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}×\frac{{u}}{{u}^{\mathrm{3}} +\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{9}}×\int\:\left(\frac{\mathrm{1}}{{u}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}{u}−\mathrm{1}}{{u}^{\mathrm{2}} −{u}+\mathrm{1}}+\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{1}}{\left({u}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}\right){du}= \\ $$$$\Rightarrow{I}=−\frac{\mathrm{1}}{\mathrm{3}}×\frac{{u}}{{u}^{\mathrm{3}} +\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{9}}\:{ln}\left({u}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{9}}{ln}\left({u}^{\mathrm{2}} −{u}+\mathrm{1}\right)+\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{u}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\: \\ $$$$\Rightarrow{ans}=−\frac{\mathrm{1}}{\mathrm{3}}×\frac{{u}}{{u}^{\mathrm{3}} +\mathrm{1}}\:+\frac{\mathrm{1}}{\mathrm{9}}{ln}\left(\frac{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} −{u}+\mathrm{1}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{u}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\:\mid_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{\pi}{\:\mathrm{2}\sqrt{\mathrm{3}}}+\frac{\pi}{\:\mathrm{6}\sqrt{\mathrm{3}}}=\frac{\mathrm{2}\sqrt{\mathrm{3}\:}\pi}{\:\mathrm{9}\:}\:\checkmark \\ $$$$ \\ $$
Commented by Frix last updated on 15/Jun/23
$${I}=\int\frac{\mathrm{3}{u}^{\mathrm{3}} }{\left({u}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }{du} \\ $$$${I}=−\frac{{u}}{{u}^{\mathrm{3}} +\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left(\frac{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} −{u}+\mathrm{1}}\right)\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \:\frac{\mathrm{2}{u}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+{C} \\ $$$$\Rightarrow \\ $$$$\mathrm{Your}\:\mathrm{result}\:\mathrm{is}\:\mathrm{wrong}. \\ $$
Commented by MM42 last updated on 14/Jun/23
$${why}\:\:“\:{I}=\int\:\frac{\mathrm{3}{u}^{\mathrm{2}} }{\left({u}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }\:{du}\:''\:??? \\ $$$${in}\:{addition}\:: \\ $$$$\int\:\frac{\mathrm{3}{u}^{\mathrm{2}} }{\left({u}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }\:{du}=\frac{−\mathrm{1}}{{u}^{\mathrm{3}} +\mathrm{1}}\:+{c}\:\because \\ $$$$ \\ $$
Commented by MM42 last updated on 14/Jun/23
$${thank}\:{you}\:{for}\:{your}\:{mention}. \\ $$
Commented by Frix last updated on 15/Jun/23
$$\mathrm{Typo},\:\mathrm{I}\:\mathrm{corrected}\:\mathrm{it}\:\mathrm{2}\rightarrow\mathrm{3} \\ $$
Commented by Tawa11 last updated on 16/Jun/23
$$\mathrm{MM42}\:\mathrm{you}\:\mathrm{are}\:\mathrm{MrW}?? \\ $$$$\mathrm{I}\:\mathrm{can}\:\mathrm{see}\:\mathrm{mrW}\:\mathrm{hand}\:\mathrm{writing}\:\mathrm{in}\:\mathrm{all}\:\mathrm{MM42}\:\mathrm{solutions}. \\ $$$$\mathrm{Sm}\:\mathrm{sorry}\:\mathrm{if}\:\mathrm{am}\:\mathrm{wrong}. \\ $$$$\mathrm{Just}\:\mathrm{that}\:\mathrm{I}\:\mathrm{miss}\:\mathrm{mrW} \\ $$$$\mathrm{or}\:\mathrm{you}\:\mathrm{are}\:\mathrm{mjs}? \\ $$