Menu Close

pi-3-pi-3-x-sin-x-cos-2-x-dx-




Question Number 55772 by gunawan last updated on 04/Mar/19
 ∫_(−π/3) ^(π/3)  ((x sin x)/(cos^2 x)) dx =
π/3π/3xsinxcos2xdx=
Commented by maxmathsup by imad last updated on 04/Mar/19
let  A= ∫_(−(π/3)) ^(π/3)   ((xsinx)/(cos^2 x)) dx ⇒ A =2 ∫_0 ^(π/3)   ((xsinx)/(cos^2 x))dx  by parts u=x and v^′ =((sinx)/(cos^2 x))  A =2{  [(x/(cosx))]_0 ^(π/3)  −∫_0 ^(π/3)  (dx/(cosx))} =2 { (π/(3(1/2))) −∫_0 ^(π/3)  (dx/(cosx))}  =((4π)/3) −2 ∫_0 ^(π/3)   (dx/(cosx))     but ∫_0 ^(π/3)  (dx/(cosx)) =_(tan((x/2))=t )     ∫_0 ^(1/( (√3)))    (1/((1−t^2 )/(1+t^2 ))) ((2dt)/(1+t^2 ))  =∫_0 ^(1/( (√3)))   ((2dt)/(1−t^2 )) =∫_0 ^(1/( (√3)))    { (1/(1−t)) +(1/(1+t))}dt=[ln∣((1+t)/(1−t))∣]_0 ^(1/( (√3)))  =ln∣(((√3)+1)/( (√3)−1))∣ ⇒  A =((4π)/3) −2 ln((((√3)+1)/( (√3)−1))) .
letA=π3π3xsinxcos2xdxA=20π3xsinxcos2xdxbypartsu=xandv=sinxcos2xA=2{[xcosx]0π30π3dxcosx}=2{π3120π3dxcosx}=4π320π3dxcosxbut0π3dxcosx=tan(x2)=t01311t21+t22dt1+t2=0132dt1t2=013{11t+11+t}dt=[ln1+t1t]013=ln3+131A=4π32ln(3+131).
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
∫xtanxsexdx  x∫tanxsecxdx−∫[(dx/dx)∫tanxsecxdx] dx  xsecx−∫secxdx  xsecx−ln(secx+tanx)  ∣xsecx−ln(secx+tanx)∣_((−π)/3) ^(π/3)   [{(π/3)sec(π/(3 ))−ln(sec(π/3)+tan(π/3))}−{((−π)/3)sec(((−π)/3))−ln(sec((−π)/3)+tan((−π)/3))}]  =[{(π/3)×2−ln(2+(√3) )}−{((−2π)/3)−ln(2−(√3) )}]  =((4π)/3)+ln(((2−(√3))/(2+(√3))))  pls check
xtanxsexdxxtanxsecxdx[dxdxtanxsecxdx]dxxsecxsecxdxxsecxln(secx+tanx)xsecxln(secx+tanx)π3π3[{π3secπ3ln(secπ3+tanπ3)}{π3sec(π3)ln(secπ3+tanπ3)}]=[{π3×2ln(2+3)}{2π3ln(23)}]=4π3+ln(232+3)plscheck
Commented by gunawan last updated on 04/Mar/19
Answer is true Sir  Thanks
AnsweristrueSirThanks
Commented by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
thank you sir to  make our brain active and agile...
thankyousirtomakeourbrainactiveandagile

Leave a Reply

Your email address will not be published. Required fields are marked *