Question Number 55772 by gunawan last updated on 04/Mar/19

Commented by maxmathsup by imad last updated on 04/Mar/19
![let A= ∫_(−(π/3)) ^(π/3) ((xsinx)/(cos^2 x)) dx ⇒ A =2 ∫_0 ^(π/3) ((xsinx)/(cos^2 x))dx by parts u=x and v^′ =((sinx)/(cos^2 x)) A =2{ [(x/(cosx))]_0 ^(π/3) −∫_0 ^(π/3) (dx/(cosx))} =2 { (π/(3(1/2))) −∫_0 ^(π/3) (dx/(cosx))} =((4π)/3) −2 ∫_0 ^(π/3) (dx/(cosx)) but ∫_0 ^(π/3) (dx/(cosx)) =_(tan((x/2))=t ) ∫_0 ^(1/( (√3))) (1/((1−t^2 )/(1+t^2 ))) ((2dt)/(1+t^2 )) =∫_0 ^(1/( (√3))) ((2dt)/(1−t^2 )) =∫_0 ^(1/( (√3))) { (1/(1−t)) +(1/(1+t))}dt=[ln∣((1+t)/(1−t))∣]_0 ^(1/( (√3))) =ln∣(((√3)+1)/( (√3)−1))∣ ⇒ A =((4π)/3) −2 ln((((√3)+1)/( (√3)−1))) .](https://www.tinkutara.com/question/Q55840.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
![∫xtanxsexdx x∫tanxsecxdx−∫[(dx/dx)∫tanxsecxdx] dx xsecx−∫secxdx xsecx−ln(secx+tanx) ∣xsecx−ln(secx+tanx)∣_((−π)/3) ^(π/3) [{(π/3)sec(π/(3 ))−ln(sec(π/3)+tan(π/3))}−{((−π)/3)sec(((−π)/3))−ln(sec((−π)/3)+tan((−π)/3))}] =[{(π/3)×2−ln(2+(√3) )}−{((−2π)/3)−ln(2−(√3) )}] =((4π)/3)+ln(((2−(√3))/(2+(√3)))) pls check](https://www.tinkutara.com/question/Q55795.png)
Commented by gunawan last updated on 04/Mar/19

Commented by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
