Question Number 193408 by cortano12 last updated on 13/Jun/23
$$\:\underline{\underbrace{ }} \\ $$
Answered by MM42 last updated on 13/Jun/23
$${lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}×\left(\frac{\mathrm{1}−\left({e}^{\frac{{a}}{{n}}} \right)^{{n}} ×\frac{\mathrm{1}}{{e}^{\frac{{a}}{{n}}} }}{\mathrm{1}−{e}^{\frac{{a}}{{n}}} }\right)= \\ $$$${lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}×\left(\frac{{e}^{\frac{{a}}{{n}}} −\left({e}^{\frac{{a}}{{n}}} \right)^{{n}} }{\mathrm{1}−{e}^{\frac{{a}}{{n}}} }\right)×\frac{\mathrm{1}}{{e}^{\frac{{a}}{{n}}} }= \\ $$$${lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}×\frac{\mathrm{1}}{{e}^{\frac{{a}}{{n}}} }×\left(\frac{{e}^{\frac{{a}}{{n}}} −\mathrm{1}+\mathrm{1}−\left({e}^{\frac{{a}}{{n}}} \right)^{{n}} }{\mathrm{1}−{e}^{\frac{{a}}{{n}}} }\right)= \\ $$$${lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}×\frac{\mathrm{1}}{{e}^{\frac{{a}}{{n}}} }\left(\frac{{e}^{\frac{{a}}{{n}}} −\mathrm{1}}{\mathrm{1}−{e}^{\frac{{a}}{{n}}} }\right)+{lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}×\frac{\mathrm{1}}{{e}^{\frac{{a}}{{n}}} }×\left(\frac{\mathrm{1}−\left({e}^{\frac{{a}}{{n}}} \right)^{{n}} }{\mathrm{1}−{e}^{\frac{{a}}{{n}}} }\right)= \\ $$$${lim}_{{n}\rightarrow\infty} \:\left(\frac{\frac{\mathrm{1}}{{n}}}{\mathrm{1}−{e}^{\frac{{a}}{{n}}} }\right)={lim}_{{n}\rightarrow\infty} \:\left(\frac{−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }}{\:\frac{{a}}{{n}^{\mathrm{2}} }{e}^{\frac{{a}}{{n}}} }\:\right)=−\frac{\mathrm{1}}{{a}} \\ $$$$={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}×\frac{\mathrm{1}}{{e}^{\frac{{a}}{{n}}} }×\left(\frac{\mathrm{1}−\left({e}^{\frac{{a}}{{n}}} \right)^{{n}} }{\mathrm{1}−{e}^{\frac{{a}}{{n}}} }\right)= \\ $$$${lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\left(\mathrm{1}+{e}^{\frac{{a}}{{n}}} +{e}^{\frac{\mathrm{2}{a}}{{n}}} +…+{e}^{\frac{{na}}{{n}}} \right)= \\ $$$${lim}_{{n}\rightarrow\infty} \:\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:{e}^{\frac{{i}}{{n}}{a}} \:×\frac{\mathrm{1}}{{n}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{ax}} {dx}=\frac{{e}^{{a}} −\mathrm{1}}{{a}}\: \\ $$$$\Rightarrow{ans}=\frac{{e}^{{a}} −\mathrm{2}}{{a}}\:\checkmark \\ $$