Question Number 193411 by cortano12 last updated on 13/Jun/23
$$\:\:\:\:\: \\ $$$$ \\ $$
Commented by BaliramKumar last updated on 13/Jun/23
$$\mathrm{put}\:\:\:{x}\:=\:{cos}\mathrm{2}\theta \\ $$
Answered by Frix last updated on 13/Jun/23
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx}\:\overset{{t}=\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}} {=}\: \\ $$$$=\mathrm{4}\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\left[\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}+\mathrm{2tan}^{−\mathrm{1}} \:{t}\right]_{\mathrm{1}} ^{\infty} = \\ $$$$=\frac{\pi}{\mathrm{2}}−\mathrm{1} \\ $$
Answered by Subhi last updated on 13/Jun/23
$${put}\:{x}={cos}\left(\theta\right)\:\Rrightarrow\:{dx}=−{sin}\left(\theta\right).{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{1}−{cos}\left(\theta\right)}{\mathrm{1}+{cos}\left(\theta\right)}}.−{sin}\left(\theta\right){d}\theta \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} {tan}\left(\frac{\theta}{\mathrm{2}}\right).{sin}\left(\theta\right){d}\theta\:\Rrightarrow\:−\mathrm{2}\int\frac{{sin}\left(\frac{\theta}{\mathrm{2}}\right)}{{cos}\left(\frac{\theta}{\mathrm{2}}\right)}.{sin}\left(\frac{\theta}{\mathrm{2}}\right).{cos}\left(\frac{\theta}{\mathrm{2}}\right){d}\theta \\ $$$$−\mathrm{2}\int{sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right){d}\theta\:\Rrightarrow\:−\int\mathrm{1}−{cos}\left(\theta\right){d}\theta\:\Rrightarrow{sin}\left(\theta\right)−\theta \\ $$$${x}=\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} \left(\theta\right)}\:\Rrightarrow\:{sin}\left(\theta\right)=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\left[\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−{cos}^{−\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\mathrm{0}−\left(\mathrm{1}−\frac{\pi}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{2}}−\mathrm{1} \\ $$$$ \\ $$