Menu Close

r-0-n-n-C-r-1-r-log-e-10-1-log-e-10-n-r-equals-




Question Number 56886 by gunawan last updated on 25/Mar/19
Σ_(r=0) ^n ^n C_r ((1+r log_e 10)/((1+log_e 10^n )^r ))  equals
nr=0nCr1+rloge10(1+loge10n)requals
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Mar/19
a=log_e 10 and (1+nlog_e 10)=b [b=1+na]  Σ_(r=0) ^n  nC_r ×((1+ar)/((b)^r ))=Σ_(r=0) ^n nC_r ×(1/b^r )+aΣ_(r=0) ^n nC_r ×(r/b^r )  (1+(1/b))^n =nC_0 ×1^n +nC_1 ×(1/b^1 )+nC_2 ×(1/b^2 )+..+nC_n ×(1/b^n )  so Σ_(r=0) ^n nC_r ×(1/b^r )=(1+(1/b))^n ⇚look here  aΣ_(r=0) ^n nC_r ×(r/b^r )  =a(nC_o ×(0/b^0 )+nC_1 ×(1/b^1 )+nC_2 ×(2/b^2 )+..+nC_n ×(n/b^n ))  now (1+(x/b))^n =nC_0 ×(x^0 /b^0 )+nC_1 ×(x^1 /b^1 )+nC_2 ×(x^2 /b^2 )+..+nC_n ×(x^n /b^n )  differentiate both side w.r.t x  n(1+(x/b))^(n−1) ×(1/b)=nC_0 ×0+nC_1 ×(1/b^1 )+nC_2 ×((2x)/b^2 )+...+nC_n ×((nx^(n−1) )/b^n )  now put x=1 both side  n(1+(1/b))^(n−1) =Σ_(r=0) ^n nC_r ×(r/b^r )  so value of aΣ_(r=0) ^n nC_r ×(r/b^r )=a×n(1+(1/b))^(n−1)  ⇚look here  hence rewuired answer is  Σ_(r=0) ^n nC_r ×(1/b^r )+aΣ_(r=0) ^n nC_n ×(r/b^r )  =(1+(1/b))^n +a×n(1+(1/b))^(n−1)   =(1+(1/b))^(n−1) ×(1+(1/b)+an)  [b=1+na and a=log_e 10]  =(1+(1/(1+na)))^(n−1) ×(1+na+(1/(1+na)))  =(1+(1/(nlog_e 10)))^(n−1) (1+nlog_e 10+(1/(1+nlog_e 10)))
a=loge10and(1+nloge10)=b[b=1+na]nr=0nCr×1+ar(b)r=nr=0nCr×1br+anr=0nCr×rbr(1+1b)n=nC0×1n+nC1×1b1+nC2×1b2+..+nCn×1bnsonr=0nCr×1br=(1+1b)nlookhereanr=0nCr×rbr=a(nCo×0b0+nC1×1b1+nC2×2b2+..+nCn×nbn)now(1+xb)n=nC0×x0b0+nC1×x1b1+nC2×x2b2+..+nCn×xnbndifferentiatebothsidew.r.txn(1+xb)n1×1b=nC0×0+nC1×1b1+nC2×2xb2++nCn×nxn1bnnowputx=1bothsiden(1+1b)n1=nr=0nCr×rbrsovalueofanr=0nCr×rbr=a×n(1+1b)n1lookherehencerewuiredanswerisnr=0nCr×1br+anr=0nCn×rbr=(1+1b)n+a×n(1+1b)n1=(1+1b)n1×(1+1b+an)[b=1+naanda=loge10]=(1+11+na)n1×(1+na+11+na)=(1+1nloge10)n1(1+nloge10+11+nloge10)

Leave a Reply

Your email address will not be published. Required fields are marked *