Menu Close

Roots-of-the-equation-9x-2-18-x-5-0-belonging-to-the-domain-of-definition-of-the-function-f-x-log-x-2-x-2-is-are-




Question Number 4882 by Rishabh Jain last updated on 19/Mar/16
Roots of the equation 9x^2 −18∣x∣+5=0  belonging to the domain of definition  of the function f(x)=log (x^2 −x−2) is/  are
Rootsoftheequation9x218x+5=0belongingtothedomainofdefinitionofthefunctionf(x)=log(x2x2)is/are
Answered by Yozzii last updated on 19/Mar/16
We are given that 9x^2 −18∣x∣+5=0  (∗)  Since x^2 =∣x∣^2 , (∗) becomes  9∣x∣^2 −18∣x∣+5=0 with discriminant D  valued as D=18^2 −4×9×5>0. So, the  roots of (∗) are real and distinct.   Factorising (∗) gives (3∣x∣−1)(3∣x∣−5)=0.  Hence, x=((±1)/3),((±5)/3).  Now, the logarithmic function f(x)=log(h(x)) is real valued  iff the range of h(x) is strictly positive.  So, let h(x)=x^2 −x−2=(x+1)(x−2).  h(x)>0 when (1) x+1<0 & x−2<0  ⇒ x<−1, or (2) when x+1>0 & x−2>0  ⇒x>2. The domain of f(x) is the set  A={x∈R∣x>2 or x<−1}. The only   solution that lies in A is ((−5)/3). So,  the required value of x is x=((−5)/3).
Wearegiventhat9x218x+5=0()Sincex2=∣x2,()becomes9x218x+5=0withdiscriminantDvaluedasD=1824×9×5>0.So,therootsof()arerealanddistinct.Factorising()gives(3x1)(3x5)=0.Hence,x=±13,±53.Now,thelogarithmicfunctionf(x)=log(h(x))isrealvaluedifftherangeofh(x)isstrictlypositive.So,leth(x)=x2x2=(x+1)(x2).h(x)>0when(1)x+1<0&x2<0x<1,or(2)whenx+1>0&x2>0x>2.Thedomainoff(x)isthesetA={xRx>2orx<1}.TheonlysolutionthatliesinAis53.So,therequiredvalueofxisx=53.

Leave a Reply

Your email address will not be published. Required fields are marked *