Menu Close

Solution-of-x-1-x-3-is-




Question Number 114420 by Aina Samuel Temidayo last updated on 19/Sep/20
Solution of  ∣ x−1 ∣≥∣ x−3 ∣ is
Solutionofx1∣⩾∣x3is
Commented by bemath last updated on 19/Sep/20
short cut  ⇔ (x−1+x−3)(x−1−x+3)≥0  ⇔(2x−4)(2)≥ 0  ⇔ x ≥ 2 ; x∈ [2,∞)
shortcut(x1+x3)(x1x+3)0(2x4)(2)0x2;x[2,)
Commented by Aina Samuel Temidayo last updated on 19/Sep/20
This is not well explanatory.
Thisisnotwellexplanatory.
Commented by bemath last updated on 19/Sep/20
no. your just square both sides
no.yourjustsquarebothsides
Commented by bobhans last updated on 19/Sep/20
mr bemath creative. santuyy
mrbemathcreative.santuyy
Answered by Aina Samuel Temidayo last updated on 19/Sep/20
⇒∣x−1∣ −∣x−3∣≥0  CASE I:  when x−1≥0 and x−3≥0  x≥1 and x≥3  Finding their intersections  ⇒x≥3  ⇒ ∣x−1∣−∣x−3∣≥0 , x≥3  ⇒ x−1−(x−3)≥0  ⇒ x−1−x+3≥0  ⇒ 2≥0  ⇒ x∈R  Recall x≥3 ⇒ x≥3                              OR  CASE II:  when x−1<0 and x−3<0  ⇒ x<1 and x<3  Finding their intersections  ⇒x<1  ⇒ ∣x−1∣−∣x−3∣≥0  = −(x−1)−(−(x−3))≥0  ⇒ −x+1−(−x+3)≥0  ⇒−x+1+x−3≥0  ⇒−2≥0  ⇒ x∈φ                                OR  Case III:  when x−1<0 and x−3≥0  ⇒ x<1 and x≥3   Finding their intersections  ⇒ x∈φ                                  OR  Case IV:  x−1≥0 and x−3<0  ⇒ x≥0 and x<3  Finding their intersections  ⇒ x∈ [0,3)  ⇒ ∣x−1∣−∣x−3∣≥0  = x−1−(−(x−3))≥0  ⇒ x−1−(−x+3)≥0  ⇒ x−1+x−3≥0  ⇒ 2x≥4  ⇒ x≥2  since x∈[0,3)  ⇒x∈[2,3)    Combining Cases I,II,III and IV  ⇒ x∈  [2,+∞)
⇒∣x1x3∣⩾0CASEI:whenx10andx30x1andx3Findingtheirintersectionsx3x1x3∣⩾0,x3x1(x3)0x1x+3020xRRecallx3x3ORCASEII:whenx1<0andx3<0x<1andx<3Findingtheirintersectionsx<1x1x3∣⩾0=(x1)((x3))0x+1(x+3)0x+1+x3020xϕORCaseIII:whenx1<0andx30x<1andx3FindingtheirintersectionsxϕORCaseIV:x10andx3<0x0andx<3Findingtheirintersectionsx[0,3)x1x3∣⩾0=x1((x3))0x1(x+3)0x1+x302x4x2sincex[0,3)x[2,3)CombiningCasesI,II,IIIandIVx[2,+)
Commented by bemath last updated on 19/Sep/20
your answer very long like a road
youranswerverylonglikearoad
Answered by 1549442205PVT last updated on 19/Sep/20
Solve the inequality ∣x−1∣≥∣x−3∣(1)   Since x−1≥0⇔x≥1,x−3≥0⇔x≥3  We have the following tablet:   determinant ((x,,1,,3,),((∣x−1∣),(1−x),0,(x−1),2,(x−1)),((∣x−3∣),(3−x),2,(3−x),0,(x−3)))  From above tablet we have  i)If x≤1 then  (1)⇔1−x≥3−x⇔1≥3⇒has no roots  ii)If 1<x≤3 then   (1)⇔x−1≥3−x⇔2x≥4⇔x≥2  we have the roots are 2≤x≤3  iii)If x>3 then   (1)⇔x−1≥x−3  ⇔0.x≥−2 ⇒∀x>3 satisfy   Combining three cases we get the  roots of given inequality are  x∈[2;+∞)
Solvetheinequalityx1∣⩾∣x3(1)Sincex10x1,x30x3Wehavethefollowingtablet:|x13x11x0x12x1x33x23x0x3|Fromabovetabletwehavei)Ifx1then(1)1x3x13hasnorootsii)If1<x3then(1)x13x2x4x2wehavetherootsare2x3iii)Ifx>3then(1)x1x30.x2x>3satisfyCombiningthreecaseswegettherootsofgiveninequalityarex[2;+)

Leave a Reply

Your email address will not be published. Required fields are marked *