Menu Close

Sum-of-three-numbers-in-GP-be-14-If-one-is-added-to-first-and-second-and-1-is-subtracted-from-the-third-the-new-numbers-are-in-AP-The-smallest-of-them-is-




Question Number 12827 by 786786AM last updated on 03/May/17
Sum of three numbers in GP be 14. If one is  added to first and second and 1 is subtracted  from the third, the new numbers are in AP.  The smallest of them is
SumofthreenumbersinGPbe14.Ifoneisaddedtofirstandsecondand1issubtractedfromthethird,thenewnumbersareinAP.Thesmallestofthemis
Answered by mrW1 last updated on 04/May/17
a_1 =a  a_2 =aq  a_3 =aq^2   a_1 +a_2 +a_3 =14  a(1+q+q^2 )=14    (a_2 +1)−(a_1 +1)=(a_3 −1)−(a_2 +1)  2(a_2 +1)=(a_1 +1)+(a_3 −1)  2(aq+1)=a+1+aq^2 −1  aq^2 −2aq+a−2=0  aq^2 +aq+a−3aq−2=0  14−3aq−2=0  aq=4  a+aq+aq^2 =a+4+((16)/a)=14  a+((16)/a)=10  a^2 −10a+16=0  a=((10±(√(100−4×16)))/2)=((10±6)/2)=8 or 2  q=(1/2) or 2  the numbers are 2, 4, 8 or 8, 4, 2    ⇒the smallest of them is 2.
a1=aa2=aqa3=aq2a1+a2+a3=14a(1+q+q2)=14(a2+1)(a1+1)=(a31)(a2+1)2(a2+1)=(a1+1)+(a31)2(aq+1)=a+1+aq21aq22aq+a2=0aq2+aq+a3aq2=0143aq2=0aq=4a+aq+aq2=a+4+16a=14a+16a=10a210a+16=0a=10±1004×162=10±62=8or2q=12or2thenumbersare2,4,8or8,4,2thesmallestofthemis2.
Answered by sandy_suhendra last updated on 04/May/17
the other way, we can start from AP       AP : (a−b), a , (a+b)  GP : (a−b−1) , (a−1) , (a+b+1)  (a−b−1)+(a−1)+(a+b+1)=14  3a−1=14  3a=15 ⇒ a=5  GP : (4−b) , 4 , (6+b)  (4−b)(6+b)=4^2   24−2b−b^2 =16  b^2 +2b−8=0  (b+4)(b−2)=0  b=−4 ⇒ 8,4,2  b=2 ⇒2,4,8
theotherway,wecanstartfromAPAP:(ab),a,(a+b)GP:(ab1),(a1),(a+b+1)(ab1)+(a1)+(a+b+1)=143a1=143a=15a=5GP:(4b),4,(6+b)(4b)(6+b)=42242bb2=16b2+2b8=0(b+4)(b2)=0b=48,4,2b=22,4,8

Leave a Reply

Your email address will not be published. Required fields are marked *