Menu Close

tan-6-pi-9-33-tan-4-pi-9-27tan-2-pi-9-




Question Number 54219 by 951172235v last updated on 31/Jan/19
tan^6  (π/9)−33 tan^4 (π/9)+27tan^2  (π/9) =
tan6π933tan4π9+27tan2π9=
Answered by math1967 last updated on 31/Jan/19
let (π/9)=θ∴tan3θ=(√(3 ))      ⇒((3tanθ−tan^3 θ)/(1−3tan^2 θ)) =(√3)   ⇒(3tan θ−tan^3 θ)^2 =3(1−3tan^2 θ)^2   ⇒9tan^2 θ−6tan^4 θ+tan^6 θ=3−18tan^2 θ+27tan^4 θ  27tan^2 θ −33tan^4 θ+tan^6 θ=3  ∴tan^6 (π/9) −33tan^4 (π/9)+27tan^2 (π/9)=3 ans
letπ9=θtan3θ=33tanθtan3θ13tan2θ=3(3tanθtan3θ)2=3(13tan2θ)29tan2θ6tan4θ+tan6θ=318tan2θ+27tan4θ27tan2θ33tan4θ+tan6θ=3tan6π933tan4π9+27tan2π9=3ans

Leave a Reply

Your email address will not be published. Required fields are marked *