Question Number 18759 by 786786AM last updated on 29/Jul/17
$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} \:\mathrm{is} \\ $$
Answered by anuragbhandari123@gmail.com last updated on 29/Jul/17
$$\frac{\mathrm{2}{nC}\left({n}+\mathrm{1}\right){xofpower}\left({n}+\mathrm{1}\right)}{} \\ $$
Answered by Tinkutara last updated on 30/Jul/17
$$\mathrm{Number}\:\mathrm{of}\:\mathrm{terms}\:=\:\mathrm{2}{n}\:+\:\mathrm{1} \\ $$$$\mathrm{Middle}\:\mathrm{term}\:=\:\left({n}\:+\:\mathrm{1}\right)^{\mathrm{th}} \:\mathrm{term} \\ $$$${T}_{{n}+\mathrm{1}} \:=\:^{\mathrm{2}{n}} {C}_{{n}} {x}^{{n}} \\ $$$$\mathrm{Coefficient}\:\mathrm{of}\:\mathrm{middle}\:\mathrm{term}\:=\:^{\mathrm{2}{n}} {C}_{{n}} \\ $$$$=\:\frac{\left(\mathrm{2}{n}\right)!}{{n}!\:{n}!}\:=\:\frac{\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}….\left(\mathrm{2}{n}−\mathrm{2}\right)\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)}{{n}!\:{n}!} \\ $$$$=\:\frac{\left[\mathrm{1}.\mathrm{3}.\mathrm{5}….\left(\mathrm{2}{n}−\mathrm{1}\right)\right]\left[\mathrm{2}.\mathrm{4}.\mathrm{6}….\left(\mathrm{2}{n}\right)\right]}{{n}!\:{n}!} \\ $$$$=\:\frac{\left[\mathrm{1}.\mathrm{3}.\mathrm{5}….\left(\mathrm{2}{n}−\mathrm{1}\right)\right]\mathrm{2}^{{n}} \left[\mathrm{1}.\mathrm{2}.\mathrm{3}….\left({n}\right)\right]}{{n}!\:{n}!} \\ $$$$=\:\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}….\left(\mathrm{2}{n}\:−\:\mathrm{1}\right)}{{n}!}\:\mathrm{2}^{{n}} \\ $$