Menu Close

The-coefficient-of-x-4-in-the-expansion-of-1-x-x-2-x-3-11-is-




Question Number 55785 by gunawan last updated on 04/Mar/19
The coefficient of x^4  in the expansion of  (1+x+x^2 +x^3 )^(11)  is
Thecoefficientofx4intheexpansionof(1+x+x2+x3)11is
Commented by Tawa1 last updated on 04/Mar/19
coefficient of  x^4   in  (1 + x + x^2  + x^3 )^(11)   is  ...         =  ((11!)/((α_1 )!(α_2 )!(α_3 )!(α_4 )!)) 1^(α_1  ) (x)^α_2   (x^2 )^α_3   (x^3 )^α_4           =  ((11!)/((α_1 )!(α_2 )!(α_3 )!(α_4 )!)) (x)^α_2   (x)^(2α_3 )  (x)^(3α_4 )          =  ((11!)/((α_1 )!(α_2 )!(α_3 )!(α_4 )!)) (x)^(α_2  + 2α_3  + 3α_4 )   where   α_1  , α_2  , α_3  , α_4   are non−negative integer satisfy           α_1  + α_2  + α_3  + α_4   =  11         ......  equation (i)           α_2  + 2α_3  + 3α_4   =  4         ......  equation (ii)  Hence,             α_1  = 9 ,  α_2  = 1 ,  α_3  = 0,  α_4  = 1                               α_1  = 9 ,  α_2  = 0 ,  α_3  = 2,  α_4  = 0                               α_1  = 8 ,  α_2  = 2 ,  α_3  = 1,  α_4  = 0                               α_1  = 7 ,  α_2  = 4 ,  α_3  = 0,  α_4  = 0  coefficient of  x^4   in  (1 + x + x^2  + x^3 )^(11)   is  now           =  ((11!)/(9! 1! 0! 1!))  +  ((11!)/(9! 0! 2! 0!)) + ((11!)/(8! 2! 1! 0!)) + ((11!)/(7! 4! 0! 0!))           =  ((11 × 10 × 9!)/(9! 1! 0! 1!))  +  ((11 × 10 × 9!)/(9! 0! 2! 0!)) + ((11 × 10 × 9 × 8!)/(8! 2! 1! 0!)) + ((11 × 10 × 9 × 8 × 7!)/(7! 4! 0! 0!))           =  110  +  ((110)/(2!)) + ((990)/(2!)) + ((7920)/(4!))           =  110  +  ((110)/2) + ((990)/2) + ((7920)/(24))           =  110 + 55 + 495 + 330           =  990
coefficientofx4in(1+x+x2+x3)11is=11!(α1)!(α2)!(α3)!(α4)!1α1(x)α2(x2)α3(x3)α4=11!(α1)!(α2)!(α3)!(α4)!(x)α2(x)2α3(x)3α4=11!(α1)!(α2)!(α3)!(α4)!(x)α2+2α3+3α4whereα1,α2,α3,α4arenonnegativeintegersatisfyα1+α2+α3+α4=11equation(i)α2+2α3+3α4=4equation(ii)Hence,α1=9,α2=1,α3=0,α4=1α1=9,α2=0,α3=2,α4=0α1=8,α2=2,α3=1,α4=0α1=7,α2=4,α3=0,α4=0coefficientofx4in(1+x+x2+x3)11isnow=11!9!1!0!1!+11!9!0!2!0!+11!8!2!1!0!+11!7!4!0!0!=11×10×9!9!1!0!1!+11×10×9!9!0!2!0!+11×10×9×8!8!2!1!0!+11×10×9×8×7!7!4!0!0!=110+1102!+9902!+79204!=110+1102+9902+792024=110+55+495+330=990
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
{(1+x)+x^2 (1+x)}^(11)   {(1+x)(1+x^2 )}^(11)   (1+x)^(11) (1+x^2 )^(11)   (1+11c_1 x+11c_2 x^2 +11c_3 x^3 +11c_4 x^4 +...+11c_(11) x^(11) )×(1+11c_1 x^2 +11c_2 x^4 +11c_3 x^6 +...+11c_(11) x^(22) )  terms containing x^4  are  1×11c_2 x^4 +11c_2 x^2 ×11c_1 x^2 +11c_4 x^4 ×1  =x^4 (11c_2 +11c_2 ×11c_1 +11c_4 )  =x^4 (((11!)/(2!9!))+((11!)/(2!9!))×((11!)/(1!10!))+((11!)/(4!7!)))  =x^4 (55+55×11+((11×10×9×8)/(4×3×2)))  =x^4 (55+605+330)  =x^4 (990)  pls check...
{(1+x)+x2(1+x)}11{(1+x)(1+x2)}11(1+x)11(1+x2)11(1+11c1x+11c2x2+11c3x3+11c4x4++11c11x11)×(1+11c1x2+11c2x4+11c3x6++11c11x22)termscontainingx4are1×11c2x4+11c2x2×11c1x2+11c4x4×1=x4(11c2+11c2×11c1+11c4)=x4(11!2!9!+11!2!9!×11!1!10!+11!4!7!)=x4(55+55×11+11×10×9×84×3×2)=x4(55+605+330)=x4(990)plscheck
Answered by mr W last updated on 06/Mar/19
1+x+x^2 +x^3 =((1−x^4 )/(1−x))  (1+x+x^2 +x^3 )^(11)   =(1−x^4 )^(11) (1−x)^(−11)   =Σ_(k=0) ^(11) C_k ^(11) (−x^4 )^k Σ_(k=0) ^∞ C_k ^(10+k) x^k   coef. of x^4 :  C_1 ^(11) (−1)^1 +C_4 ^(14)   =−11+1001  =990
1+x+x2+x3=1x41x(1+x+x2+x3)11=(1x4)11(1x)11=11k=0Ck11(x4)kk=0Ck10+kxkcoef.ofx4:C111(1)1+C414=11+1001=990
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19
sum of gp series...S=((a(1−r^n ))/(1−r))=((1−x^4 )/(1−x))
sumofgpseriesS=a(1rn)1r=1x41x
Commented by Tawa1 last updated on 05/Mar/19
Sir, please can you explain this method very well sir,   i like it sir.   How    1 + x + x^2  + x^3  = ((1 − x^4 )/(1 − x))   and the summation part ..  etc ...
Sir,pleasecanyouexplainthismethodverywellsir,ilikeitsir.How1+x+x2+x3=1x41xandthesummationpart..etc
Commented by Tawa1 last updated on 05/Mar/19
God bless you sir. i appreciate
Godblessyousir.iappreciate
Commented by Tawa1 last updated on 05/Mar/19
Why is the summation zero to infinity for power −11
Whyisthesummationzerotoinfinityforpower11
Commented by mr W last updated on 06/Mar/19
(1/(1−x))=1+x+x^2 +x^3 +... →infinite  (1/((1−x)^p ))=(1+x+x^2 +x^3 +...)^p →infinite  (1/((1−x)^p ))=Σ_(k=0) ^∞ a_k x^k
11x=1+x+x2+x3+infinite1(1x)p=(1+x+x2+x3+)pinfinite1(1x)p=k=0akxk
Commented by Tawa1 last updated on 06/Mar/19
God bless you sir
Godblessyousir
Commented by mr W last updated on 06/Mar/19
it′s useful:  (1/((1−x)^p ))=Σ_(k=0) ^∞ C_k ^( p−1+k) x^k
itsuseful:1(1x)p=k=0Ckp1+kxk

Leave a Reply

Your email address will not be published. Required fields are marked *