Question Number 42684 by 1996ajaykmar@email.com last updated on 31/Aug/18
$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{\mathrm{4}} \:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left(\frac{{x}}{\mathrm{2}}\:−\:\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\right)^{\mathrm{10}} \:\mathrm{is} \\ $$
Commented by maxmathsup by imad last updated on 31/Aug/18
$${let}\:{p}\left({x}\right)\:=\:\left(\frac{{x}}{\mathrm{2}}\:−\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\right)^{\mathrm{10}} \:\Rightarrow{p}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{10}} \:{x}^{\mathrm{20}} }\left({x}^{\mathrm{3}} −\mathrm{6}\right)^{\mathrm{10}} \\ $$$$=\:\mathrm{2}^{−\mathrm{10}} \:{x}^{−\mathrm{20}} \:\sum_{{k}=\mathrm{0}} ^{\mathrm{10}} \:{C}_{\mathrm{10}} ^{{k}} \:\:{x}^{\mathrm{3}{k}} \:\left(−\mathrm{6}\right)^{\mathrm{10}−{k}} \:=\mathrm{2}^{−\mathrm{10}} \:\sum_{{k}=\mathrm{0}} ^{\mathrm{10}} \:\:{C}_{\mathrm{10}} ^{{k}} \:{x}^{\mathrm{3}{k}−\mathrm{20}} \:\left(−\mathrm{6}\right)^{\mathrm{10}−\mathrm{3}{k}} \:\:\: \\ $$$${the}\:{coefficient}\:{x}^{\mathrm{4}} \:{is}\:{obtained}\:{when}\:\mathrm{3}{k}−\mathrm{20}\:=\mathrm{4}\:\Rightarrow{k}\:=\mathrm{8}\:\Rightarrow \\ $$$$\lambda_{\mathrm{4}} =\:\mathrm{2}^{−\mathrm{10}} \:\:{C}_{\mathrm{10}} ^{\mathrm{8}} \:\:\left(−\mathrm{6}\right)^{\mathrm{10}−\mathrm{24}} \:=\mathrm{2}^{−\mathrm{10}} \:\:\left(−\mathrm{6}\right)^{−\mathrm{14}} \:\:\:{C}_{\mathrm{10}} ^{\mathrm{8}} \:\:\:=\:\frac{\mathrm{2}^{−\mathrm{10}} }{\mathrm{6}^{\mathrm{14}} }\:\:{C}_{\mathrm{10}} ^{\mathrm{8}} \\ $$$$=\:\frac{\mathrm{2}^{−\mathrm{10}} }{\mathrm{2}^{\mathrm{14}} \:.\mathrm{3}^{\mathrm{14}} }\:\frac{\mathrm{10}!}{\mathrm{8}!\mathrm{2}!}\:=\:\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{24}} \:.\mathrm{3}^{\mathrm{14}} }\:\left(\mathrm{45}\right)\:=\:\frac{\mathrm{45}}{\mathrm{2}^{\mathrm{24}} \:\mathrm{3}^{\mathrm{13}} }\:=\:\frac{\mathrm{3}^{\mathrm{2}} \:.\mathrm{5}}{\mathrm{2}^{\mathrm{24}} \:\mathrm{3}^{\mathrm{13}} }\:=\frac{\mathrm{5}}{\mathrm{2}^{\mathrm{24}} \:.\mathrm{3}^{\mathrm{11}} }\:\:. \\ $$
Commented by Rio Michael last updated on 31/Aug/18
$$\left(\frac{{x}}{\mathrm{2}}−\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\right)^{\mathrm{10}} \\ $$$${General}\:{term}\:=\:\:^{{n}} {C}_{{r}} .{X}^{{n}−{r}} .{a}^{{r}\:} \\ $$$${for}\:\left(\frac{{x}}{\mathrm{2}}\:−\:\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\right)^{\mathrm{10}} \:=\:^{\mathrm{10}} {C}_{{r}} .\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{10}−{r}} \left(−\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\right)^{{r}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:^{\mathrm{10}} {C}_{{r}} .\:{x}^{\mathrm{10}−{r}} .\mathrm{2}^{−\mathrm{10}+{r}} .−\mathrm{3}^{{r}} .{x}^{−{r}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:^{\mathrm{10}} {C}_{{r}} .\mathrm{2}^{−\mathrm{10}+{r}} .−\mathrm{3}^{{r}} .{x}^{\mathrm{10}−{r}} .{x}^{−{r}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=^{\mathrm{10}} {C}_{{r}\:} .\mathrm{2}^{−\mathrm{10}+{r}} .−\mathrm{3}^{{r}} .{x}^{\mathrm{10}−\mathrm{2}{r}} \\ $$$${for}\:{term}\:{in}\:{x}^{\mathrm{4}} ,\:\:\:{x}^{\mathrm{4}} \:=\:{x}^{\mathrm{10}−\mathrm{2}{r}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{4}\:=\:\mathrm{10}\:−\:\mathrm{2}{r} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{6}\:=\:−\mathrm{2}{r} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{r}\:=\:\mathrm{3} \\ $$$${term}\:{in}\:{x}^{\mathrm{4}} =\:^{\mathrm{10}} {C}_{\mathrm{3}} .\mathrm{2}^{−\mathrm{7}} −\mathrm{3}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\mathrm{120}\right)\left(\frac{\mathrm{1}}{\mathrm{128}}\right)\left(−\mathrm{27}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\frac{\mathrm{405}}{\mathrm{16}} \\ $$