Menu Close

The-coefficient-of-x-5-in-the-expansion-of-1-x-21-1-x-22-1-x-30-is-




Question Number 56095 by gunawan last updated on 10/Mar/19
The coefficient of x^5  in the expansion of  (1+x)^(21)  +(1+x)^(22) +...+(1+x)^(30)   is
Thecoefficientofx5intheexpansionof(1+x)21+(1+x)22++(1+x)30is
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Mar/19
(1+x)^n   let (r+1)th term contains x^5   nc_r x^r →so x^r =x^5 →r=5  now (1+x)^(21)  →21c_5 x^5   (1+x)^(22) →22c_5 x^5   ...  ...  required answer is  21c_5 +22c_5 +23c_5 +...+30c_5
(1+x)nlet(r+1)thtermcontainsx5ncrxrsoxr=x5r=5now(1+x)2121c5x5(1+x)2222c5x5requiredansweris21c5+22c5+23c5++30c5
Answered by mr W last updated on 10/Mar/19
(1+x)^(21)  +(1+x)^(22) +...+(1+x)^(30)   =(((1+x)^(21) [(1+x)^(10) −1])/((1+x)−1))  =(((1+x)^(31) −(1+x)^(21) )/x)  coef. of x^5  term is:  C_6 ^(31) −C_6 ^(21) =682017
(1+x)21+(1+x)22++(1+x)30=(1+x)21[(1+x)101](1+x)1=(1+x)31(1+x)21xcoef.ofx5termis:C631C621=682017
Commented by gunawan last updated on 10/Mar/19
wow thank you Sir
wowthankyouSir
Commented by malwaan last updated on 10/Mar/19
what is the formula   that you used ? please
whatistheformulathatyouused?please
Commented by mr W last updated on 10/Mar/19
S=(1+x)^(21)  +(1+x)^(22) +...+(1+x)^(30)   is a geometric progression with  a_1 =(1+x)^(21)   q=(1+x)  n=10  S=((a_1 (q^n −1))/(q−1))=(((1+x)^(21) [(1+x)^(10) −1])/((1+x)−1))  =(((1+x)^(31) −(1+x)^(21) )/x)  x^6  term of (1+x)^(31)  is C_6 ^(31) x^6   x^6  term of (1+x)^(21)  is C_6 ^(21) x^6   x^5  term of S is ((C_6 ^(31) x^6 −C_6 ^(21) x^6 )/x)=(C_6 ^(31) −C_6 ^(21) )x^5
S=(1+x)21+(1+x)22++(1+x)30isageometricprogressionwitha1=(1+x)21q=(1+x)n=10S=a1(qn1)q1=(1+x)21[(1+x)101](1+x)1=(1+x)31(1+x)21xx6termof(1+x)31isC631x6x6termof(1+x)21isC621x6x5termofSisC631x6C621x6x=(C631C621)x5
Commented by malwaan last updated on 11/Mar/19
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *