Menu Close

The-coefficient-of-x-m-in-1-x-p-1-x-p-1-1-x-n-p-m-n-is-




Question Number 62086 by Cypher1207 last updated on 15/Jun/19
The coefficient of x^m  in  (1+x)^p +(1+x)^(p+1) +...+(1+x)^n , p≤ m≤ n  is
Thecoefficientofxmin(1+x)p+(1+x)p+1++(1+x)n,pmnis
Answered by mr W last updated on 15/Jun/19
(1+x)^p +(1+x)^(p+1) +...+(1+x)^n     ← GP  =(((1+x)^p [(1+x)^(n−p+1) −1])/((1+x)−1))  =(((1+x)^(n+1) −(1+x)^p )/x)  =(1/x)[Σ_(k=0) ^(n+1) C_k ^(n+1) x^k −Σ_(k=0) ^p C_k ^p x^k ]  =(1/x)[Σ_(k=0) ^p C_k ^(n+1) x^k −Σ_(k=0) ^p C_k ^p x^k +Σ_(k=p+1) ^(n+1) C_k ^(n+1) x^k ]  =(1/x)[Σ_(k=0) ^p (C_k ^(n+1) −C_k ^p )x^k +Σ_(k=p+1) ^(n+1) C_k ^(n+1) x^k ]  =Σ_(k=0) ^p (C_k ^(n+1) −C_k ^p )x^(k−1) +Σ_(k=p+1) ^(n+1) C_k ^(n+1) x^(k−1)   =Σ_(k=0) ^(p−1) (C_(k+1) ^(n+1) −C_(k+1) ^p )x^k +Σ_(k=p) ^n C_(k+1) ^(n+1) x^k   =Σ_(k=0) ^n a_k x^k   with a_k = { ((C_(k+1) ^(n+1) −C_(k+1) ^p  for 0≤k≤p−1)),((C_(k+1) ^(n+1)  for p≤k≤n)) :}  for p≤m≤n,  coef. of x^m  is C_(m+1) ^(n+1) .
(1+x)p+(1+x)p+1++(1+x)nGP=(1+x)p[(1+x)np+11](1+x)1=(1+x)n+1(1+x)px=1x[n+1k=0Ckn+1xkpk=0Ckpxk]=1x[pk=0Ckn+1xkpk=0Ckpxk+n+1k=p+1Ckn+1xk]=1x[pk=0(Ckn+1Ckp)xk+n+1k=p+1Ckn+1xk]=pk=0(Ckn+1Ckp)xk1+n+1k=p+1Ckn+1xk1=p1k=0(Ck+1n+1Ck+1p)xk+nk=pCk+1n+1xk=nk=0akxkwithak={Ck+1n+1Ck+1pfor0kp1Ck+1n+1forpknforpmn,coef.ofxmisCm+1n+1.

Leave a Reply

Your email address will not be published. Required fields are marked *