Menu Close

The-coefficient-of-x-n-2-in-the-polynomial-x-1-x-2-x-n-is-




Question Number 8132 by 314159 last updated on 01/Oct/16
The  coefficient of x^(n−2)  in the polynomial  (x−1)(x−2)....(x−n)  is
Thecoefficientofxn2inthepolynomial(x1)(x2).(xn)is
Commented by Yozzia last updated on 01/Oct/16
coefficient(x^(n−2) )=Σ_(∀α,β∈[1,n]) αβ  1×2+1×3+1×4+...+1×n  +2×3+2×4+2×5+...+2×n  +3×4+3×5+...+3+n  +...+(n−1)×n
coefficient(xn2)=α,β[1,n]αβ1×2+1×3+1×4++1×n+2×3+2×4+2×5++2×n+3×4+3×5++3+n++(n1)×n
Answered by prakash jain last updated on 01/Oct/16
From Yozzi′s comment  Σ_(j=1) ^(n−1)  Σ_(i=j+1) ^n j∙i  Please see post from sou Q8139 for correct answer.
FromYozziscommentn1j=1ni=j+1jiPleaseseepostfromsouQ8139forcorrectanswer.
Commented by prakash jain last updated on 02/Oct/16
Σ_(j=1) ^(n−1) j(Σ_(i=1) ^n i−Σ_(i=1) ^j j)  =Σ_(j=1) ^(n−1) j((n(n+1))/2)−Σ_(j=1) ^(n−1) j((j(j+1))/2)  =((n(n+1)n(n−1))/4)−Σ_(j=1) ^(n−1) ((j^3 +j^2 )/2)  =((n^2 (n−1)(n+1))/4)−(1/2){(((n−1)n)/2)}^2 −(1/2){(((n−1)n(2n−1))/6)}  =((n(n−1))/(24))[6n(n+1)−3n(n−1)−2(2n−1)]  =((n(n−1))/(24))[6n^2 +6n−3n^2 +3n−4n+2]  =((n(n−1))/(24))[3n^2 +5n+2]  =((n(n−1))/(24))[3n^2 +3n+2n+2]  =((n(n−1)(n+1)(3n+2))/(24))
n1j=1j(ni=1iji=1j)=n1j=1jn(n+1)2n1j=1jj(j+1)2=n(n+1)n(n1)4n1j=1j3+j22=n2(n1)(n+1)412{(n1)n2}212{(n1)n(2n1)6}=n(n1)24[6n(n+1)3n(n1)2(2n1)]=n(n1)24[6n2+6n3n2+3n4n+2]=n(n1)24[3n2+5n+2]=n(n1)24[3n2+3n+2n+2]=n(n1)(n+1)(3n+2)24

Leave a Reply

Your email address will not be published. Required fields are marked *