Menu Close

The-coefficient-of-x-r-in-the-expansion-of-1-4x-1-2-is-




Question Number 63937 by gunawan last updated on 11/Jul/19
The coefficient of x^r   in the expansion of  (1−4x)^(−1/2)   is
Thecoefficientofxrintheexpansionof(14x)1/2is
Answered by mr W last updated on 12/Jul/19
C_r ^(1/2) =(1/(r!))×(1/2)×((1/2)−1)×((1/2)−2)×...×((1/2)−(r−1))  C_r ^(1/2) =(1/(r!))×(1/2)×(((1−2)/2))×(((1−2×2)/2))×...×(((1−2(r−1))/2))  C_r ^(1/2) =(((−1)^(r−1) ×1×3×5...×(2r−3))/(2^r r!))  C_r ^(1/2) =(((−1)^(r−1) (2r−3)!!)/(2^r r!))  (√(1−x))=(1−x)^(1/2) =Σ_(r=0) ^∞ C_r ^(1/2) (−x)^r   (√(1−x))=−Σ_(r=0) ^∞ (((2r−3)!!)/(2^r r!))x^r   (√(1−4x))=−Σ_(r=0) ^∞ ((2^r (2r−3)!!)/(r!))x^r   ((d...)/dx) on both sides  (1/( (√(1−4x))))=Σ_(r=1) ^∞ ((2^(r−1) (2r−3)!!)/((r−1)!))x^(r−1)   (1−4x)^(−(1/2)) =(1/( (√(1−4x))))=Σ_(r=0) ^∞ ((2^r (2r−1)!!)/(r!))x^r   ⇒coef. of x^r  is a_r =((2^r (2r−1)!!)/(r!))  r=0: a_0 =((2^0 ×1)/1)=1  r=1: a_1 =((2^1 ×1)/1)=2  r=2: a_2 =((2^2 ×3×1)/(2×1))=6  r=3: a_3 =((2^3 ×5×3×1)/(3×2×1))=20  r=4: a_4 =((2^4 ×7×5×3×1)/(4×3×2×1))=70  r=5: a_5 =((2^5 ×9×7×5×3×1)/(5×4×3×2×1))=252  ......
Cr12=1r!×12×(121)×(122)××(12(r1))Cr12=1r!×12×(122)×(12×22)××(12(r1)2)Cr12=(1)r1×1×3×5×(2r3)2rr!Cr12=(1)r1(2r3)!!2rr!1x=(1x)12=r=0Cr12(x)r1x=r=0(2r3)!!2rr!xr14x=r=02r(2r3)!!r!xrddxonbothsides114x=r=12r1(2r3)!!(r1)!xr1(14x)12=114x=r=02r(2r1)!!r!xrcoef.ofxrisar=2r(2r1)!!r!r=0:a0=20×11=1r=1:a1=21×11=2r=2:a2=22×3×12×1=6r=3:a3=23×5×3×13×2×1=20r=4:a4=24×7×5×3×14×3×2×1=70r=5:a5=25×9×7×5×3×15×4×3×2×1=252

Leave a Reply

Your email address will not be published. Required fields are marked *