Menu Close

The-cubes-of-the-natural-numbers-are-grouped-as-1-3-2-3-3-3-4-3-5-3-6-3-then-the-sum-of-the-numbers-in-the-nth-group-is-




Question Number 110015 by ZiYangLee last updated on 26/Aug/20
The cubes of the natural numbers are  grouped as 1^3 , (2^3 , 3^3 ), (4^3 , 5^3 , 6^3 ), ....,  then the sum of the numbers in the nth  group is
Thecubesofthenaturalnumbersaregroupedas13,(23,33),(43,53,63),.,thenthesumofthenumbersinthenthgroupis
Commented by Dwaipayan Shikari last updated on 26/Aug/20
for  1,(2,3),(4,5,6)....  Σy=Σ(n^2 −((5n)/2)+(5/2))=((n(n+1)(2n+1))/6)−((5n(n+1))/4)+((5n)/2)
for1,(2,3),(4,5,6).Σy=Σ(n25n2+52)=n(n+1)(2n+1)65n(n+1)4+5n2
Answered by Dwaipayan Shikari last updated on 26/Aug/20
nth group first term is y^3   y △y△^2 y  1        1  2          1        2  4          1       3  7  y=1+(n−1)+(1/2)(n−1)(n−2)=(n^2 −((5n)/2)+(5/2))  y^3 =(n^2 −((5n)/2)+(5/2))^3   Σ_(n=1) ^n (n^2 −((5n)/2)+(5/2))^3 =(1/(672))n(96n^6 −504n^5 +1344n^4 −2205n^3 +2618n^2 −2205n+1528)
nthgroupfirsttermisy3yy2y112124137y=1+(n1)+12(n1)(n2)=(n25n2+52)y3=(n25n2+52)3nn=1(n25n2+52)3=1672n(96n6504n5+1344n42205n3+2618n22205n+1528)
Commented by aurpeyz last updated on 26/Aug/20
Pls explain how you got the numbers you wrote   in the first 9 lines and hou you arrived at   n^2 −((5n)/2)+(5/2)
Plsexplainhowyougotthenumbersyouwroteinthefirst9linesandhouyouarrivedatn25n2+52
Commented by Dwaipayan Shikari last updated on 26/Aug/20
Newton′s forward interpolation  φ(y)=y_0 +△y_0 (n−1)+△^2 y_0 (((n−1)(n−2))/(2!))+...  △y is the difference between sequences
Newtonsforwardinterpolationϕ(y)=y0+y0(n1)+2y0(n1)(n2)2!+yisthedifferencebetweensequences
Commented by Dwaipayan Shikari last updated on 26/Aug/20
https://en.m.wikipedia.org/wiki/Interpolation
Commented by aurpeyz last updated on 27/Aug/20
I understand. how come you use 1 2 4 7?
Iunderstand.howcomeyouuse1247?
Answered by mr W last updated on 27/Aug/20
1+2+3+...+(n−1)=(((n−1)n)/2)  the sum of the nth group is:  S_n =Σ_(k=(((n−1)n)/2)+1) ^((((n−1)n)/2)+n) k^3   =Σ_(k=1) ^((((n−1)n)/2)+n) k^3 −Σ_(k=1) ^(((n−1)n)/2) k^3   =[(1/2)((((n−1)n)/2)+n)((((n−1)n)/2)+n+1)]^2   −[(1/2)((((n−1)n)/2))((((n−1)n)/2)+1)]^2   =((n^2 [(n+1)^2 (n^2 +n+2)^2 −(n−1)^2 (n^2 −n+2)^2 )/(64))]  =((n^3 (n^2 +1)(n^2 +3))/8)
1+2+3++(n1)=(n1)n2thesumofthenthgroupis:Sn=(n1)n2+nk=(n1)n2+1k3=(n1)n2+nk=1k3(n1)n2k=1k3=[12((n1)n2+n)((n1)n2+n+1)]2[12((n1)n2)((n1)n2+1)]2=n2[(n+1)2(n2+n+2)2(n1)2(n2n+2)264]=n3(n2+1)(n2+3)8
Commented by mr W last updated on 26/Aug/20
check:  S_1 =((1^3 (1^2 +1)(1^2 +3))/8)=1=1^3  ⇒ok  S_2 =((2^3 (2^2 +1)(2^2 +3))/8)=35=2^3 +3^3  ⇒ok  S_3 =((3^3 (3^2 +1)(3^2 +3))/8)=405=4^3 +5^3 +6^3  ⇒ok  S_4 =((4^3 (4^2 +1)(4^2 +3))/8)=2584=7^3 +8^3 +9^3 +10^3  ⇒ok
check:S1=13(12+1)(12+3)8=1=13okS2=23(22+1)(22+3)8=35=23+33okS3=33(32+1)(32+3)8=405=43+53+63okS4=43(42+1)(42+3)8=2584=73+83+93+103ok
Commented by ZiYangLee last updated on 27/Aug/20
Love your solution the most ==
Loveyoursolutionthemost==

Leave a Reply

Your email address will not be published. Required fields are marked *