Question Number 110015 by ZiYangLee last updated on 26/Aug/20
$$\mathrm{The}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{are} \\ $$$$\mathrm{grouped}\:\mathrm{as}\:\mathrm{1}^{\mathrm{3}} ,\:\left(\mathrm{2}^{\mathrm{3}} ,\:\mathrm{3}^{\mathrm{3}} \right),\:\left(\mathrm{4}^{\mathrm{3}} ,\:\mathrm{5}^{\mathrm{3}} ,\:\mathrm{6}^{\mathrm{3}} \right),\:…., \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{the}\:{n}\mathrm{th} \\ $$$$\mathrm{group}\:\mathrm{is} \\ $$
Commented by Dwaipayan Shikari last updated on 26/Aug/20
$${for} \\ $$$$\mathrm{1},\left(\mathrm{2},\mathrm{3}\right),\left(\mathrm{4},\mathrm{5},\mathrm{6}\right)…. \\ $$$$\Sigma{y}=\Sigma\left({n}^{\mathrm{2}} −\frac{\mathrm{5}{n}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{2}}\right)=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}−\frac{\mathrm{5}{n}\left({n}+\mathrm{1}\right)}{\mathrm{4}}+\frac{\mathrm{5}{n}}{\mathrm{2}} \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 26/Aug/20
$${nth}\:{group}\:{first}\:{term}\:{is}\:{y}^{\mathrm{3}} \\ $$$${y}\:\bigtriangleup{y}\bigtriangleup^{\mathrm{2}} {y} \\ $$$$\mathrm{1} \\ $$$$\:\:\:\:\:\:\mathrm{1} \\ $$$$\mathrm{2}\:\:\:\:\:\:\:\:\:\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\mathrm{2} \\ $$$$\mathrm{4}\:\:\:\:\:\:\:\:\:\:\mathrm{1} \\ $$$$\:\:\:\:\:\mathrm{3} \\ $$$$\mathrm{7} \\ $$$${y}=\mathrm{1}+\left({n}−\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)=\left({n}^{\mathrm{2}} −\frac{\mathrm{5}{n}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{2}}\right) \\ $$$${y}^{\mathrm{3}} =\left({n}^{\mathrm{2}} −\frac{\mathrm{5}{n}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left({n}^{\mathrm{2}} −\frac{\mathrm{5}{n}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{672}}{n}\left(\mathrm{96}{n}^{\mathrm{6}} −\mathrm{504}{n}^{\mathrm{5}} +\mathrm{1344}{n}^{\mathrm{4}} −\mathrm{2205}{n}^{\mathrm{3}} +\mathrm{2618}{n}^{\mathrm{2}} −\mathrm{2205}{n}+\mathrm{1528}\right) \\ $$
Commented by aurpeyz last updated on 26/Aug/20
$${Pls}\:{explain}\:{how}\:{you}\:{got}\:{the}\:{numbers}\:{you}\:{wrote}\: \\ $$$${in}\:{the}\:{first}\:\mathrm{9}\:{lines}\:{and}\:{hou}\:{you}\:{arrived}\:{at}\: \\ $$$${n}^{\mathrm{2}} −\frac{\mathrm{5}{n}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{2}} \\ $$
Commented by Dwaipayan Shikari last updated on 26/Aug/20
$${Newton}'{s}\:{forward}\:{interpolation} \\ $$$$\phi\left({y}\right)={y}_{\mathrm{0}} +\bigtriangleup{y}_{\mathrm{0}} \left({n}−\mathrm{1}\right)+\bigtriangleup^{\mathrm{2}} {y}_{\mathrm{0}} \frac{\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{2}!}+… \\ $$$$\bigtriangleup{y}\:{is}\:{the}\:{difference}\:{between}\:{sequences} \\ $$
Commented by Dwaipayan Shikari last updated on 26/Aug/20
https://en.m.wikipedia.org/wiki/Interpolation
Commented by aurpeyz last updated on 27/Aug/20
$$\mathrm{I}\:\mathrm{understand}.\:\mathrm{how}\:\mathrm{come}\:\mathrm{you}\:\mathrm{use}\:\mathrm{1}\:\mathrm{2}\:\mathrm{4}\:\mathrm{7}? \\ $$
Answered by mr W last updated on 27/Aug/20
$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\left({n}−\mathrm{1}\right)=\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}} \\ $$$${the}\:{sum}\:{of}\:{the}\:{nth}\:{group}\:{is}: \\ $$$${S}_{{n}} =\underset{{k}=\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}+\mathrm{1}} {\overset{\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}+{n}} {\sum}}{k}^{\mathrm{3}} \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}+{n}} {\sum}}{k}^{\mathrm{3}} −\underset{{k}=\mathrm{1}} {\overset{\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}} {\sum}}{k}^{\mathrm{3}} \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}+{n}\right)\left(\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}+{n}+\mathrm{1}\right)\right]^{\mathrm{2}} \\ $$$$−\left[\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}\right)\left(\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}+\mathrm{1}\right)\right]^{\mathrm{2}} \\ $$$$\left.=\frac{{n}^{\mathrm{2}} \left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}^{\mathrm{2}} +{n}+\mathrm{2}\right)^{\mathrm{2}} −\left({n}−\mathrm{1}\right)^{\mathrm{2}} \left({n}^{\mathrm{2}} −{n}+\mathrm{2}\right)^{\mathrm{2}} \right.}{\mathrm{64}}\right] \\ $$$$=\frac{{n}^{\mathrm{3}} \left({n}^{\mathrm{2}} +\mathrm{1}\right)\left({n}^{\mathrm{2}} +\mathrm{3}\right)}{\mathrm{8}} \\ $$
Commented by mr W last updated on 26/Aug/20
$${check}: \\ $$$${S}_{\mathrm{1}} =\frac{\mathrm{1}^{\mathrm{3}} \left(\mathrm{1}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{1}^{\mathrm{2}} +\mathrm{3}\right)}{\mathrm{8}}=\mathrm{1}=\mathrm{1}^{\mathrm{3}} \:\Rightarrow{ok} \\ $$$${S}_{\mathrm{2}} =\frac{\mathrm{2}^{\mathrm{3}} \left(\mathrm{2}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{2}^{\mathrm{2}} +\mathrm{3}\right)}{\mathrm{8}}=\mathrm{35}=\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} \:\Rightarrow{ok} \\ $$$${S}_{\mathrm{3}} =\frac{\mathrm{3}^{\mathrm{3}} \left(\mathrm{3}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{3}^{\mathrm{2}} +\mathrm{3}\right)}{\mathrm{8}}=\mathrm{405}=\mathrm{4}^{\mathrm{3}} +\mathrm{5}^{\mathrm{3}} +\mathrm{6}^{\mathrm{3}} \:\Rightarrow{ok} \\ $$$${S}_{\mathrm{4}} =\frac{\mathrm{4}^{\mathrm{3}} \left(\mathrm{4}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{4}^{\mathrm{2}} +\mathrm{3}\right)}{\mathrm{8}}=\mathrm{2584}=\mathrm{7}^{\mathrm{3}} +\mathrm{8}^{\mathrm{3}} +\mathrm{9}^{\mathrm{3}} +\mathrm{10}^{\mathrm{3}} \:\Rightarrow{ok} \\ $$
Commented by ZiYangLee last updated on 27/Aug/20
$$\mathrm{Love}\:\mathrm{your}\:\mathrm{solution}\:\mathrm{the}\:\mathrm{most}\:== \\ $$