Question Number 53532 by gunawan last updated on 23/Jan/19
$$\mathrm{The}\:\mathrm{derivative}\:\mathrm{of}\:{F}\:\left({x}\right)=\underset{{x}^{\mathrm{2}} } {\overset{{x}^{\mathrm{3}} } {\int}}\:\frac{\mathrm{1}}{\mathrm{log}\:{t}}\:{dt} \\ $$$$\left({x}\:>\mathrm{0}\right)\:\mathrm{is} \\ $$
Commented by Abdo msup. last updated on 23/Jan/19
$$\frac{{dF}}{{dx}}\left({x}\right)=\frac{\left({x}^{\mathrm{3}} \right)^{'} }{{log}\left({x}^{\mathrm{3}} \right)}\:−\frac{\left({x}^{\mathrm{2}} \right)^{'} }{{log}\left({x}^{\mathrm{2}} \right)}\:=\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{3}{log}\left({x}\right)}\:−\frac{\mathrm{2}{x}}{\mathrm{2}{log}\left({x}\right)} \\ $$$$=\frac{{x}^{\mathrm{2}} −{x}}{{log}\left({x}\right)} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jan/19
$$\frac{{dF}\left({x}\right)}{{dx}}=\int_{{x}^{\mathrm{2}} } ^{{x}^{\mathrm{3}} } \:\frac{\partial}{\partial{x}}\left(\frac{\mathrm{1}}{{logt}}\right){dt}\:+\frac{\mathrm{1}}{{logx}^{\mathrm{3}} }×\frac{{d}}{{dx}}\left({x}^{\mathrm{3}} \right)−\frac{\mathrm{1}}{{logx}^{\mathrm{2}} }×\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} \right) \\ $$$$=\mathrm{0}+\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{3}{logx}}−\frac{\mathrm{2}{x}}{\mathrm{2}{logx}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{{logx}}−\frac{{x}}{{logx}}=\frac{{x}}{{logx}}\left({x}−\mathrm{1}\right) \\ $$
Commented by gunawan last updated on 23/Jan/19
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir} \\ $$
Commented by malwaan last updated on 23/Jan/19
$$\mathrm{0}\:\:\mathrm{how}? \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jan/19
$${partial}\:{differentiation}\:{of}\:{F}\left({t}\right)\:{w}.{r}.{t}.{x}\:{is}\:{x}\:{is}\:\mathrm{0} \\ $$
Commented by malwaan last updated on 24/Jan/19
$$\mathrm{Yes} \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir} \\ $$