Menu Close

The-digit-at-unit-s-place-in-the-number-17-1995-11-1995-7-1995-is-




Question Number 86499 by ram roop sharma last updated on 29/Mar/20
The digit at unit′s place in the number  17^(1995) + 11^(1995) −7^(1995)   is
$$\mathrm{The}\:\mathrm{digit}\:\mathrm{at}\:\mathrm{unit}'\mathrm{s}\:\mathrm{place}\:\mathrm{in}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{17}^{\mathrm{1995}} +\:\mathrm{11}^{\mathrm{1995}} −\mathrm{7}^{\mathrm{1995}} \:\:\mathrm{is} \\ $$
Commented by Serlea last updated on 29/Mar/20
17^(1995) +11^(1995) −7^(1995) =11^(1995) (mod10)  {17=7(mod10)}  11=1(mod)  11^(1995) =1(mod)  1
$$\mathrm{17}^{\mathrm{1995}} +\mathrm{11}^{\mathrm{1995}} −\mathrm{7}^{\mathrm{1995}} =\mathrm{11}^{\mathrm{1995}} \left(\mathrm{mod10}\right) \\ $$$$\left\{\mathrm{17}=\mathrm{7}\left(\mathrm{mod10}\right)\right\} \\ $$$$\mathrm{11}=\mathrm{1}\left(\mathrm{mod}\right) \\ $$$$\mathrm{11}^{\mathrm{1995}} =\mathrm{1}\left(\mathrm{mod}\right) \\ $$$$\mathrm{1} \\ $$
Answered by redmiiuser last updated on 29/Mar/20
1  as we know that the  unit digit of 17^5  and 7^5  and 7  and that of 11^5  is 1  so same with 17^(1995)  ,7^(1995)   and 11^(1995)  the unit digits  are 7 and 1.  now 7+1−7=1
$$\mathrm{1} \\ $$$${as}\:{we}\:{know}\:{that}\:{the} \\ $$$${unit}\:{digit}\:{of}\:\mathrm{17}^{\mathrm{5}} \:{and}\:\mathrm{7}^{\mathrm{5}} \:{and}\:\mathrm{7} \\ $$$${and}\:{that}\:{of}\:\mathrm{11}^{\mathrm{5}} \:{is}\:\mathrm{1} \\ $$$${so}\:{same}\:{with}\:\mathrm{17}^{\mathrm{1995}} \:,\mathrm{7}^{\mathrm{1995}} \\ $$$${and}\:\mathrm{11}^{\mathrm{1995}} \:{the}\:{unit}\:{digits} \\ $$$${are}\:\mathrm{7}\:{and}\:\mathrm{1}. \\ $$$${now}\:\mathrm{7}+\mathrm{1}−\mathrm{7}=\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *