Menu Close

The-least-value-of-the-function-x-5pi-4-x-3-sin-t-4-cos-t-dt-on-the-interval-5pi-4-4pi-3-is-




Question Number 25773 by Ali Makhzoum last updated on 14/Dec/17
The least value of the function     φ(x) = ∫_(5π/4) ^x  (3 sin t+4 cos t) dt  on the interval [ ((5π)/4), ((4π)/3) ] is
$$\mathrm{The}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:\:\:\phi\left({x}\right)\:=\:\underset{\mathrm{5}\pi/\mathrm{4}} {\overset{{x}} {\int}}\:\left(\mathrm{3}\:\mathrm{sin}\:{t}+\mathrm{4}\:\mathrm{cos}\:{t}\right)\:{dt} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{interval}\:\left[\:\frac{\mathrm{5}\pi}{\mathrm{4}},\:\frac{\mathrm{4}\pi}{\mathrm{3}}\:\right]\:\mathrm{is} \\ $$
Answered by ajfour last updated on 14/Dec/17
φ(x)=(4sin t−3cos t)∣_(5π/4) ^x     =4sin x−3cos x−(−(4/( (√2)))+(3/( (√2))))    =4sin x−3cos x+(1/( (√2)))    =5sin (x−α)+(1/( (√2)))             where α=sin^(−1) ((4/5))   ((d[φ(x)])/dx) =5cos (x−α)  if       ((5π)/4) ≤ x ≤ ((4π)/3)    225°−53° ≤ x−α ≤ 240°−53°  ⇒       172° ≤ x−α ≤ 187°    so ((d[φ(x)])/dx) =5cos (x−α) < 0  function φ(x) is decreasing in  this interval; hence in this  interval φ(x) is least for x=4π/3  φ(((4π)/3))=4sin (((4π)/3))−3cos (((4π)/3))+(1/( (√2)))              =4×(−((√3)/2))−3(−(1/2))+(1/( (√2)))              =(3/2)+(1/( (√2)))−2(√3) .
$$\phi\left({x}\right)=\left(\mathrm{4sin}\:{t}−\mathrm{3cos}\:{t}\right)\mid_{\mathrm{5}\pi/\mathrm{4}} ^{{x}} \\ $$$$\:\:=\mathrm{4sin}\:{x}−\mathrm{3cos}\:{x}−\left(−\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$\:\:=\mathrm{4sin}\:{x}−\mathrm{3cos}\:{x}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\:\:=\mathrm{5sin}\:\left({x}−\alpha\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{where}\:\alpha=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{5}}\right) \\ $$$$\:\frac{{d}\left[\phi\left({x}\right)\right]}{{dx}}\:=\mathrm{5cos}\:\left({x}−\alpha\right) \\ $$$${if}\:\:\:\:\:\:\:\frac{\mathrm{5}\pi}{\mathrm{4}}\:\leqslant\:{x}\:\leqslant\:\frac{\mathrm{4}\pi}{\mathrm{3}} \\ $$$$\:\:\mathrm{225}°−\mathrm{53}°\:\leqslant\:{x}−\alpha\:\leqslant\:\mathrm{240}°−\mathrm{53}° \\ $$$$\Rightarrow\:\:\:\:\:\:\:\mathrm{172}°\:\leqslant\:{x}−\alpha\:\leqslant\:\mathrm{187}° \\ $$$$\:\:{so}\:\frac{{d}\left[\phi\left({x}\right)\right]}{{dx}}\:=\mathrm{5cos}\:\left({x}−\alpha\right)\:<\:\mathrm{0} \\ $$$${function}\:\phi\left({x}\right)\:{is}\:{decreasing}\:{in} \\ $$$${this}\:{interval};\:{hence}\:{in}\:{this} \\ $$$${interval}\:\phi\left({x}\right)\:{is}\:{least}\:{for}\:{x}=\mathrm{4}\pi/\mathrm{3} \\ $$$$\phi\left(\frac{\mathrm{4}\pi}{\mathrm{3}}\right)=\mathrm{4sin}\:\left(\frac{\mathrm{4}\pi}{\mathrm{3}}\right)−\mathrm{3cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4}×\left(−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)−\mathrm{3}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\mathrm{2}\sqrt{\mathrm{3}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *