Menu Close

The-least-value-of-the-function-x-5pi-4-x-3-sin-t-4-cos-t-dt-on-the-interval-5pi-4-4pi-3-is-




Question Number 25773 by Ali Makhzoum last updated on 14/Dec/17
The least value of the function     φ(x) = ∫_(5π/4) ^x  (3 sin t+4 cos t) dt  on the interval [ ((5π)/4), ((4π)/3) ] is
Theleastvalueofthefunctionϕ(x)=x5π/4(3sint+4cost)dtontheinterval[5π4,4π3]is
Answered by ajfour last updated on 14/Dec/17
φ(x)=(4sin t−3cos t)∣_(5π/4) ^x     =4sin x−3cos x−(−(4/( (√2)))+(3/( (√2))))    =4sin x−3cos x+(1/( (√2)))    =5sin (x−α)+(1/( (√2)))             where α=sin^(−1) ((4/5))   ((d[φ(x)])/dx) =5cos (x−α)  if       ((5π)/4) ≤ x ≤ ((4π)/3)    225°−53° ≤ x−α ≤ 240°−53°  ⇒       172° ≤ x−α ≤ 187°    so ((d[φ(x)])/dx) =5cos (x−α) < 0  function φ(x) is decreasing in  this interval; hence in this  interval φ(x) is least for x=4π/3  φ(((4π)/3))=4sin (((4π)/3))−3cos (((4π)/3))+(1/( (√2)))              =4×(−((√3)/2))−3(−(1/2))+(1/( (√2)))              =(3/2)+(1/( (√2)))−2(√3) .
ϕ(x)=(4sint3cost)5π/4x=4sinx3cosx(42+32)=4sinx3cosx+12=5sin(xα)+12whereα=sin1(45)d[ϕ(x)]dx=5cos(xα)if5π4x4π3225°53°xα240°53°172°xα187°sod[ϕ(x)]dx=5cos(xα)<0functionϕ(x)isdecreasinginthisinterval;henceinthisintervalϕ(x)isleastforx=4π/3ϕ(4π3)=4sin(4π3)3cos(4π3)+12=4×(32)3(12)+12=32+1223.

Leave a Reply

Your email address will not be published. Required fields are marked *