Question Number 86663 by ram roop sharma last updated on 30/Mar/20
![The matrix A satisfying the equation [(1,3),(0,1) ]A = [(1,( 1)),(0,(−1)) ] is](https://www.tinkutara.com/question/Q86663.png)
$$\mathrm{The}\:\mathrm{matrix}\:{A}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{1}}\end{bmatrix}{A}\:=\:\begin{bmatrix}{\mathrm{1}}&{\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix}\:\mathrm{is} \\ $$
Commented by Prithwish Sen 1 last updated on 30/Mar/20
![[((1 4)),((0 −1)) ]](https://www.tinkutara.com/question/Q86666.png)
$$\begin{bmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{4}}\\{\mathrm{0}\:\:\:−\mathrm{1}}\end{bmatrix} \\ $$
Answered by Kunal12588 last updated on 30/Mar/20
![A= [(1,3),(0,1) ]^(−1) [(1,( 1)),(0,(−1)) ] A= [(1,(−3)),(0,( 1)) ] [(1,( 1)),(0,(−1)) ] A= [(1,( 4)),(0,(−1)) ]](https://www.tinkutara.com/question/Q86667.png)
$${A}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{1}}\end{bmatrix}^{−\mathrm{1}} \begin{bmatrix}{\mathrm{1}}&{\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix} \\ $$$${A}=\begin{bmatrix}{\mathrm{1}}&{−\mathrm{3}}\\{\mathrm{0}}&{\:\:\:\:\:\mathrm{1}}\end{bmatrix}\begin{bmatrix}{\mathrm{1}}&{\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix} \\ $$$${A}=\begin{bmatrix}{\mathrm{1}}&{\:\:\:\:\:\mathrm{4}}\\{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix} \\ $$