Menu Close

The-number-of-all-possible-5-tuples-a-1-a-2-a-3-a-4-a-5-such-that-a-1-a-2-sin-x-a-3-cos-x-a-4-sin-2x-a-5-cos-2x-0-holds-for-all-x-is-




Question Number 44128 by gunawan last updated on 22/Sep/18
The number of all possible 5−tuples  (a_1 , a_2 , a_3 , a_4 , a_5 ) such that   a_1 +a_2 sin x+a_3 cos x+a_4 sin 2x+a_5 cos 2x=0  holds for all   x  is
Thenumberofallpossible5tuples(a1,a2,a3,a4,a5)suchthata1+a2sinx+a3cosx+a4sin2x+a5cos2x=0holdsforallxis
Answered by MrW3 last updated on 22/Sep/18
Way 1 to solve:  x=0:  a_1 +a_3 +a_5 =0   ...(1)  x=π:  a_1 −a_3 +a_5 =0   ...(2)  (1)−(2)⇒a_3 =0    x=(π/2):  a_1 +a_2 −a_5 =0   ...(3)  x=−(π/2):  a_1 −a_2 −a_5 =0   ...(4)  (3)−(4)⇒a_2 =0    x=(π/4):  a_1 +a_4 =0   ...(5)  x=−(π/4):  a_1 −a_4 =0   ...(6)  (5)−(6)⇒a_4 =0  (5)+(6)⇒a_1 =0  (1)⇒a_5 =0  ⇒(a_1 ,...a_5 )=(0,0,0,0,0)    Way 2 to solve:  a_1 +(√(a_2 ^2 +a_3 ^2 )) sin (x+θ_1 )+(√(a_4 ^2 +a_5 ^2 )) sin (2x+θ_2 )=0  (√(a_2 ^2 +a_3 ^2 ))=0⇒a_2 =0,a_3 =0  (√(a_4 ^2 +a_5 ^2 ))=0⇒a_4 =0,a_5 =0  ⇒a_1 =0
Way1tosolve:x=0:a1+a3+a5=0(1)x=π:a1a3+a5=0(2)(1)(2)a3=0x=π2:a1+a2a5=0(3)x=π2:a1a2a5=0(4)(3)(4)a2=0x=π4:a1+a4=0(5)x=π4:a1a4=0(6)(5)(6)a4=0(5)+(6)a1=0(1)a5=0(a1,a5)=(0,0,0,0,0)Way2tosolve:a1+a22+a32sin(x+θ1)+a42+a52sin(2x+θ2)=0a22+a32=0a2=0,a3=0a42+a52=0a4=0,a5=0a1=0

Leave a Reply

Your email address will not be published. Required fields are marked *