Menu Close

The-number-of-all-possible-5-tuples-a-1-a-2-a-3-a-4-a-5-such-that-a-1-a-2-sin-x-a-3-cos-x-a-4-sin-2x-a-5-cos-2x-0-holds-for-all-x-is-




Question Number 44128 by gunawan last updated on 22/Sep/18
The number of all possible 5−tuples  (a_1 , a_2 , a_3 , a_4 , a_5 ) such that   a_1 +a_2 sin x+a_3 cos x+a_4 sin 2x+a_5 cos 2x=0  holds for all   x  is
$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{5}−\mathrm{tuples} \\ $$$$\left({a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:{a}_{\mathrm{3}} ,\:{a}_{\mathrm{4}} ,\:{a}_{\mathrm{5}} \right)\:\mathrm{such}\:\mathrm{that}\: \\ $$$${a}_{\mathrm{1}} +{a}_{\mathrm{2}} \mathrm{sin}\:{x}+{a}_{\mathrm{3}} \mathrm{cos}\:{x}+{a}_{\mathrm{4}} \mathrm{sin}\:\mathrm{2}{x}+{a}_{\mathrm{5}} \mathrm{cos}\:\mathrm{2}{x}=\mathrm{0} \\ $$$$\mathrm{holds}\:\mathrm{for}\:\mathrm{all}\:\:\:{x}\:\:\mathrm{is} \\ $$
Answered by MrW3 last updated on 22/Sep/18
Way 1 to solve:  x=0:  a_1 +a_3 +a_5 =0   ...(1)  x=π:  a_1 −a_3 +a_5 =0   ...(2)  (1)−(2)⇒a_3 =0    x=(π/2):  a_1 +a_2 −a_5 =0   ...(3)  x=−(π/2):  a_1 −a_2 −a_5 =0   ...(4)  (3)−(4)⇒a_2 =0    x=(π/4):  a_1 +a_4 =0   ...(5)  x=−(π/4):  a_1 −a_4 =0   ...(6)  (5)−(6)⇒a_4 =0  (5)+(6)⇒a_1 =0  (1)⇒a_5 =0  ⇒(a_1 ,...a_5 )=(0,0,0,0,0)    Way 2 to solve:  a_1 +(√(a_2 ^2 +a_3 ^2 )) sin (x+θ_1 )+(√(a_4 ^2 +a_5 ^2 )) sin (2x+θ_2 )=0  (√(a_2 ^2 +a_3 ^2 ))=0⇒a_2 =0,a_3 =0  (√(a_4 ^2 +a_5 ^2 ))=0⇒a_4 =0,a_5 =0  ⇒a_1 =0
$${Way}\:\mathrm{1}\:{to}\:{solve}: \\ $$$${x}=\mathrm{0}: \\ $$$${a}_{\mathrm{1}} +{a}_{\mathrm{3}} +{a}_{\mathrm{5}} =\mathrm{0}\:\:\:…\left(\mathrm{1}\right) \\ $$$${x}=\pi: \\ $$$${a}_{\mathrm{1}} −{a}_{\mathrm{3}} +{a}_{\mathrm{5}} =\mathrm{0}\:\:\:…\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)−\left(\mathrm{2}\right)\Rightarrow{a}_{\mathrm{3}} =\mathrm{0} \\ $$$$ \\ $$$${x}=\frac{\pi}{\mathrm{2}}: \\ $$$${a}_{\mathrm{1}} +{a}_{\mathrm{2}} −{a}_{\mathrm{5}} =\mathrm{0}\:\:\:…\left(\mathrm{3}\right) \\ $$$${x}=−\frac{\pi}{\mathrm{2}}: \\ $$$${a}_{\mathrm{1}} −{a}_{\mathrm{2}} −{a}_{\mathrm{5}} =\mathrm{0}\:\:\:…\left(\mathrm{4}\right) \\ $$$$\left(\mathrm{3}\right)−\left(\mathrm{4}\right)\Rightarrow{a}_{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$$${x}=\frac{\pi}{\mathrm{4}}: \\ $$$${a}_{\mathrm{1}} +{a}_{\mathrm{4}} =\mathrm{0}\:\:\:…\left(\mathrm{5}\right) \\ $$$${x}=−\frac{\pi}{\mathrm{4}}: \\ $$$${a}_{\mathrm{1}} −{a}_{\mathrm{4}} =\mathrm{0}\:\:\:…\left(\mathrm{6}\right) \\ $$$$\left(\mathrm{5}\right)−\left(\mathrm{6}\right)\Rightarrow{a}_{\mathrm{4}} =\mathrm{0} \\ $$$$\left(\mathrm{5}\right)+\left(\mathrm{6}\right)\Rightarrow{a}_{\mathrm{1}} =\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\Rightarrow{a}_{\mathrm{5}} =\mathrm{0} \\ $$$$\Rightarrow\left({a}_{\mathrm{1}} ,…{a}_{\mathrm{5}} \right)=\left(\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{0}\right) \\ $$$$ \\ $$$${Way}\:\mathrm{2}\:{to}\:{solve}: \\ $$$${a}_{\mathrm{1}} +\sqrt{{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} }\:\mathrm{sin}\:\left({x}+\theta_{\mathrm{1}} \right)+\sqrt{{a}_{\mathrm{4}} ^{\mathrm{2}} +{a}_{\mathrm{5}} ^{\mathrm{2}} }\:\mathrm{sin}\:\left(\mathrm{2}{x}+\theta_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\sqrt{{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} }=\mathrm{0}\Rightarrow{a}_{\mathrm{2}} =\mathrm{0},{a}_{\mathrm{3}} =\mathrm{0} \\ $$$$\sqrt{{a}_{\mathrm{4}} ^{\mathrm{2}} +{a}_{\mathrm{5}} ^{\mathrm{2}} }=\mathrm{0}\Rightarrow{a}_{\mathrm{4}} =\mathrm{0},{a}_{\mathrm{5}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{1}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *