Menu Close

The-number-of-non-zero-terms-in-the-expansion-of-1-3-2-x-9-1-3-2-x-9-is-




Question Number 63861 by gunawan last updated on 10/Jul/19
The number of non−zero terms in the  expansion of (1+3(√2) x)^9 +(1−3(√2) x)^9  is
$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{non}−\mathrm{zero}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}\:{x}\right)^{\mathrm{9}} +\left(\mathrm{1}−\mathrm{3}\sqrt{\mathrm{2}}\:{x}\right)^{\mathrm{9}} \:\mathrm{is} \\ $$
Commented by kaivan.ahmadi last updated on 10/Jul/19
even powers of x(odd terms) have nonzero coff  so  in (1+3(√2)x)^9   the sum of odd coff is  s=3(√2)+ ((9),(2) )(3(√2))^7 + ((9),(4) )(3(√2))^4 + ((9),(6) )(3(√2))^2 + ((9),(8) )(3(√2))  and in (1+3(√2)x)^9 +(1−3(√2)x)^9   the  sum  of coff  is  2s
$${even}\:{powers}\:{of}\:{x}\left({odd}\:{terms}\right)\:{have}\:{nonzero}\:{coff} \\ $$$${so} \\ $$$${in}\:\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{9}} \:\:{the}\:{sum}\:{of}\:{odd}\:{coff}\:{is} \\ $$$${s}=\mathrm{3}\sqrt{\mathrm{2}}+\begin{pmatrix}{\mathrm{9}}\\{\mathrm{2}}\end{pmatrix}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{7}} +\begin{pmatrix}{\mathrm{9}}\\{\mathrm{4}}\end{pmatrix}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{4}} +\begin{pmatrix}{\mathrm{9}}\\{\mathrm{6}}\end{pmatrix}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\begin{pmatrix}{\mathrm{9}}\\{\mathrm{8}}\end{pmatrix}\left(\mathrm{3}\sqrt{\mathrm{2}}\right) \\ $$$${and}\:{in}\:\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{9}} +\left(\mathrm{1}−\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{9}} \:\:{the}\:\:{sum} \\ $$$${of}\:{coff}\:\:{is}\:\:\mathrm{2}{s} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 10/Jul/19
we have (1+3(√2)x)^9  +(1−3(√2))^9 =Σ_(k=0) ^9  C_9 ^k (3(√2)x)^k   +Σ_(k=0) ^9  C_9 ^k  (−1)^k (3(√2))^k  =Σ_(k=0) ^9 C_9 ^k (1+(−1)^k )(3(√2))^k  x^k   =Σ_(p=0) ^([(9/2)])  C_9 ^(2p)   2  ×2^p  3^(2p)  x^(2p)  =Σ_(p=0) ^4  C_9 ^(2p)  2^(p+1)  9^p  x^(2p)    Σ_(p=0) ^4  a_p   x^(2p)   with a_p =2^(p+1)  9^p  C_9 ^(2p)  we see that a_p ≥0 ....
$${we}\:{have}\:\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{9}} \:+\left(\mathrm{1}−\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{9}} =\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} \:{C}_{\mathrm{9}} ^{{k}} \left(\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{{k}} \\ $$$$+\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} \:{C}_{\mathrm{9}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} \left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{{k}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} {C}_{\mathrm{9}} ^{{k}} \left(\mathrm{1}+\left(−\mathrm{1}\right)^{{k}} \right)\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{{k}} \:{x}^{{k}} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\left[\frac{\mathrm{9}}{\mathrm{2}}\right]} \:{C}_{\mathrm{9}} ^{\mathrm{2}{p}} \:\:\mathrm{2}\:\:×\mathrm{2}^{{p}} \:\mathrm{3}^{\mathrm{2}{p}} \:{x}^{\mathrm{2}{p}} \:=\sum_{{p}=\mathrm{0}} ^{\mathrm{4}} \:{C}_{\mathrm{9}} ^{\mathrm{2}{p}} \:\mathrm{2}^{{p}+\mathrm{1}} \:\mathrm{9}^{{p}} \:{x}^{\mathrm{2}{p}} \: \\ $$$$\sum_{{p}=\mathrm{0}} ^{\mathrm{4}} \:{a}_{{p}} \:\:{x}^{\mathrm{2}{p}} \:\:{with}\:{a}_{{p}} =\mathrm{2}^{{p}+\mathrm{1}} \:\mathrm{9}^{{p}} \:{C}_{\mathrm{9}} ^{\mathrm{2}{p}} \:{we}\:{see}\:{that}\:{a}_{{p}} \geqslant\mathrm{0}\:…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *