Menu Close

The-number-of-real-roots-of-the-quadratic-equation-x-4-2-x-5-2-x-6-2-0-is-




Question Number 98056 by PengagumRahasiamu last updated on 11/Jun/20
The number of real roots of the quadratic  equation (x−4)^2 +(x−5)^2 +(x−6)^2 =0 is
Thenumberofrealrootsofthequadraticequation(x4)2+(x5)2+(x6)2=0is
Commented by som(math1967) last updated on 11/Jun/20
4,5,6  sum of 3 squares are 0  ∴each of them 0  ∴(x−4)^2 =0⇒x=4  (x−5)^2 =0⇒x=5  (x−6)^2 =0 ⇒x=6
4,5,6sumof3squaresare0eachofthem0(x4)2=0x=4(x5)2=0x=5(x6)2=0x=6
Commented by mr W last updated on 11/Jun/20
there is no real root!  let t=x−5  (x−4)^2 +(x−5)^2 +(x−6)^2   =(t+1)^2 +t^2 +(t−1)^2   =3t^2 +2  ≥2  i.e. (x−4)^2 +(x−5)^2 +(x−6)^2 =0 has  no real root!
thereisnorealroot!lett=x5(x4)2+(x5)2+(x6)2=(t+1)2+t2+(t1)2=3t2+22i.e.(x4)2+(x5)2+(x6)2=0hasnorealroot!
Commented by bemath last updated on 11/Jun/20
let x−6 = t−1 , x−5 = t , x−4 = t+1  ⇔ t^2 +(t+1)^2 +(t−1)^2 =0  t^2 +t^2 +t^2 +2 = 0  3t^2  = −2 ⇔ t ∉R , since t^2  ≥ 0  for t ∈R
letx6=t1,x5=t,x4=t+1t2+(t+1)2+(t1)2=0t2+t2+t2+2=03t2=2tR,sincet20fortR

Leave a Reply

Your email address will not be published. Required fields are marked *