Menu Close

The-number-of-solutions-of-the-equation-log-101-log-7-x-7-x-0-is-




Question Number 22745 by Sahib singh last updated on 22/Oct/17
The number of solutions of the   equation  log_(101) log_7 ((√(x+7))+(√x))=0 is
$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{equation}\:\:\mathrm{log}_{\mathrm{101}} \mathrm{log}_{\mathrm{7}} \left(\sqrt{{x}+\mathrm{7}}+\sqrt{{x}}\right)=\mathrm{0}\:\mathrm{is} \\ $$
Answered by mrW1 last updated on 22/Oct/17
log_(101) log_7 ((√(x+7))+(√x))=0  ⇒log_7 ((√(x+7))+(√x))=1  ⇒(√(x+7))+(√x)=7  ⇒(√(x+7))=7−(√x)  ⇒x+7=49+x−14(√x)  ⇒(√x)=3  ⇒x=9  ⇒only one solution
$$\mathrm{log}_{\mathrm{101}} \mathrm{log}_{\mathrm{7}} \left(\sqrt{{x}+\mathrm{7}}+\sqrt{{x}}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{log}_{\mathrm{7}} \left(\sqrt{{x}+\mathrm{7}}+\sqrt{{x}}\right)=\mathrm{1} \\ $$$$\Rightarrow\sqrt{{x}+\mathrm{7}}+\sqrt{{x}}=\mathrm{7} \\ $$$$\Rightarrow\sqrt{{x}+\mathrm{7}}=\mathrm{7}−\sqrt{{x}} \\ $$$$\Rightarrow\mathrm{x}+\mathrm{7}=\mathrm{49}+\mathrm{x}−\mathrm{14}\sqrt{\mathrm{x}} \\ $$$$\Rightarrow\sqrt{\mathrm{x}}=\mathrm{3} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{9} \\ $$$$\Rightarrow\mathrm{only}\:\mathrm{one}\:\mathrm{solution} \\ $$
Commented by Sahib singh last updated on 22/Oct/17
thanks
$$\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *