Menu Close

The-number-of-terms-in-the-expansion-of-1-2x-x-2-20-when-expanded-in-descending-powers-of-x-is-




Question Number 10544 by j.masanja06@gmail.com last updated on 17/Feb/17
The number of terms in the expansion of  (1+2x+x^2 )^(20) when expanded in descending  powers of x, is
Thenumberoftermsintheexpansionof(1+2x+x2)20whenexpandedindescendingpowersofx,is
Commented by FilupS last updated on 18/Feb/17
x^2 +2x+1=(x+1)^2   ⇒(1+2x+x^2 )^(20) =(x+1)^(40)   (a+b)^n =Σ_(u=0) ^n  ((n),(u) ) a^(n−u) b^n   a=1, b=x  (x+1)^(40) =Σ_(u=0) ^(40)  (((40)),(( u)) ) x^(40−u)    (((40)),(( u)) ) =((40!)/(u!∙(40−u)!))  (x+1)^(40) =1+Σ_(u=0) ^(39)   (((40)),(( u)) ) x^(40−u)   ∴ there are 41 terms  ∀u∈(0, 39)⇒x^(40−u) >1  ∴ there are 40 coefficients of x→x^(40)   i.e. (x+1)^(40) =a_0 x^(40) +a_1 x^(39) +...+a_(38) x^2 +a_(39) x+1     continue
x2+2x+1=(x+1)2(1+2x+x2)20=(x+1)40(a+b)n=nu=0(nu)anubna=1,b=x(x+1)40=40u=0(40u)x40u(40u)=40!u!(40u)!(x+1)40=1+39u=0(40u)x40uthereare41termsu(0,39)x40u>1thereare40coefficientsofxx40i.e.(x+1)40=a0x40+a1x39++a38x2+a39x+1continue

Leave a Reply

Your email address will not be published. Required fields are marked *