Menu Close

The-pisitive-value-of-a-so-that-the-coefficient-of-x-5-and-x-15-are-equal-in-the-expansion-of-x-2-a-x-3-10-




Question Number 56138 by gunawan last updated on 11/Mar/19
The pisitive value of  a so that the  coefficient of x^5  and x^(15)  are equal in the  expansion of (x^2 + (a/x^3 ))^(10)
Thepisitivevalueofasothatthecoefficientofx5andx15areequalintheexpansionof(x2+ax3)10
Commented by maxmathsup by imad last updated on 11/Mar/19
we have (x^2  +(a/x^3 ))^(10)  =Σ_(k=0) ^(10)  C_(10) ^k  (x^2 )^k (ax^(−3) )^(10−k)   =Σ_(k=0) ^(10)  C_(10) ^k  x^(2k)  a^(10−k)  x^(−30+3k)  =Σ_(k=0) ^(10)  C_(10) ^k  a^(10−k)  x^(5k−30)   the coefficient of x^5  is λ_5  /5k−30=5 ⇒k =7 ⇒  λ_5 = C_(10) ^7  a^3     also the coefgicient of x^(15)  is λ_(15) /5k−30=15 ⇒5k=45 ⇒k=9  ⇒λ_(15) =C_(10) ^9  a  so λ_5 =λ_(15)  ⇒C_(10) ^7 a^3 =C_(10) ^9  a ⇒  ((10!)/(7!3!)) a^3  =10a ⇒((10 .9.8)/6)a^3  =10 a ⇒((3.3.4.2)/(3.2)) a^3  =a ⇒12a^3 −a =0 ⇒  a(12a^2 −1) =0 ⇒a=0 or 12a^2 =1 ⇒a=0 or a =+^−  (1/(2(√3))) .
wehave(x2+ax3)10=k=010C10k(x2)k(ax3)10k=k=010C10kx2ka10kx30+3k=k=010C10ka10kx5k30thecoefficientofx5isλ5/5k30=5k=7λ5=C107a3alsothecoefgicientofx15isλ15/5k30=155k=45k=9λ15=C109asoλ5=λ15C107a3=C109a10!7!3!a3=10a10.9.86a3=10a3.3.4.23.2a3=a12a3a=0a(12a21)=0a=0or12a2=1a=0ora=+123.
Commented by maxmathsup by imad last updated on 11/Mar/19
but a>0 ⇒a =(1/(2(√3))) .
buta>0a=123.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Mar/19
r+1 th term  contains x^5   10c_r (x^2 )^(10−r) ((a/x^3 ))^r   =10c_r ×x^(20−2r−3r) ×a^r   given 20−5r=5  5r=15→r=3  10c_3 ×x^(20−5×3) ×a^3 →((10!)/(3!7!))×a^3 ×x^5   ...  r_1 +1th term contsins x^(15)   10c_r_1  ×x^(20−5r_1 ) ×a^r_1    20−5r_1 =15→5r_1 =5    r_1 =1  10c_1 ×x^(15) ×a^1 →((10!)/(1!9!))×a^1 ×x^(15)   according to question  ((10!)/(3!7!))a^3 =((10!)/(1!9!))a^1   a^2 =((3×2×7!)/(9×8×7!))=(1/(3×4))  a=(1/(2(√3)))
r+1thtermcontainsx510cr(x2)10r(ax3)r=10cr×x202r3r×argiven205r=55r=15r=310c3×x205×3×a310!3!7!×a3×x5r1+1thtermcontsinsx1510cr1×x205r1×ar1205r1=155r1=5r1=110c1×x15×a110!1!9!×a1×x15accordingtoquestion10!3!7!a3=10!1!9!a1a2=3×2×7!9×8×7!=13×4a=123

Leave a Reply

Your email address will not be published. Required fields are marked *