Menu Close

The-probability-that-in-a-random-arrangement-of-the-letters-of-the-word-UNIVERSITY-the-two-I-do-not-come-together-is-




Question Number 99141 by babar last updated on 18/Jun/20
The probability that in a random  arrangement of the letters of the word  ′UNIVERSITY′ the two I′ do not come  together is
$$\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{in}\:\mathrm{a}\:\mathrm{random} \\ $$$$\mathrm{arrangement}\:\mathrm{of}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word} \\ $$$$'\mathrm{UNIVERSITY}'\:\mathrm{the}\:\mathrm{two}\:\mathrm{I}'\:\mathrm{do}\:\mathrm{not}\:\mathrm{come} \\ $$$$\mathrm{together}\:\mathrm{is} \\ $$
Answered by bramlex last updated on 19/Jun/20
n(S)=((10!)/(2!)) ; n(A) = 9×8!  P(A) = ((n(A))/(n(S))) = ((9×8!)/((((10!)/(2!))))) = ((2×9)/(10×9)) = (1/5)
$${n}\left({S}\right)=\frac{\mathrm{10}!}{\mathrm{2}!}\:;\:{n}\left({A}\right)\:=\:\mathrm{9}×\mathrm{8}! \\ $$$${P}\left({A}\right)\:=\:\frac{{n}\left({A}\right)}{{n}\left({S}\right)}\:=\:\frac{\mathrm{9}×\mathrm{8}!}{\left(\frac{\mathrm{10}!}{\mathrm{2}!}\right)}\:=\:\frac{\mathrm{2}×\mathrm{9}}{\mathrm{10}×\mathrm{9}}\:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Commented by bemath last updated on 19/Jun/20
it should be P(A^c ) = 1−P(A) = (4/5)
$$\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \right)\:=\:\mathrm{1}−\mathrm{P}\left(\mathrm{A}\right)\:=\:\frac{\mathrm{4}}{\mathrm{5}} \\ $$
Commented by bramlex last updated on 19/Jun/20
oh yes.
$${oh}\:{yes}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *