Menu Close

The-projection-of-the-vector-a-4i-3j-2k-on-the-axis-making-equal-acute-angles-with-the-coordinate-axes-is-




Question Number 54418 by gunawan last updated on 03/Feb/19
The projection of the vector a=4i−3j+2k  on the axis making equal acute angles  with the coordinate axes is
$$\mathrm{The}\:\mathrm{projection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{\mathrm{a}}=\mathrm{4}\boldsymbol{\mathrm{i}}−\mathrm{3}\boldsymbol{\mathrm{j}}+\mathrm{2}\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{axis}\:\mathrm{making}\:\mathrm{equal}\:\mathrm{acute}\:\mathrm{angles} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{axes}\:\mathrm{is} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
a=4i−3j+2k   so  ∣a∣=(√(4^2 +(−3)^2 +(2)^2 )) =(√(29))   projection along x axis=i(√(29)) cosα=    along y axus=j(√(29)) cosβ   along  z axis=k(√(29)) cosγ  cos^ α=cosβ=cosγ=l  l^2 +l^2 +l^2 =1   so l=±(1/( (√3) ))  so projection along x axus=±((√(29))/( (√3)))i    projection along y axis=±((√(29))/( (√3)))j    projection z axis=±((√(29))/( (√3)))k  others pls check...
$$\boldsymbol{{a}}=\mathrm{4}\boldsymbol{{i}}−\mathrm{3}\boldsymbol{{j}}+\mathrm{2}\boldsymbol{{k}}\:\:\:{so}\:\:\mid\boldsymbol{{a}}\mid=\sqrt{\mathrm{4}^{\mathrm{2}} +\left(−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{2}\right)^{\mathrm{2}} }\:=\sqrt{\mathrm{29}}\: \\ $$$${projection}\:{along}\:{x}\:{axis}=\boldsymbol{{i}}\sqrt{\mathrm{29}}\:\boldsymbol{{cos}}\alpha= \\ $$$$ \\ $$$${along}\:{y}\:{axus}={j}\sqrt{\mathrm{29}}\:{cos}\beta \\ $$$$\:{along}\:\:{z}\:{axis}={k}\sqrt{\mathrm{29}}\:{cos}\gamma \\ $$$${cos}^{} \alpha={cos}\beta={cos}\gamma={l} \\ $$$${l}^{\mathrm{2}} +{l}^{\mathrm{2}} +{l}^{\mathrm{2}} =\mathrm{1}\:\:\:{so}\:{l}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\:} \\ $$$${so}\:{projection}\:{along}\:{x}\:{axus}=\pm\frac{\sqrt{\mathrm{29}}}{\:\sqrt{\mathrm{3}}}{i} \\ $$$$\:\:{projection}\:{along}\:{y}\:{axis}=\pm\frac{\sqrt{\mathrm{29}}}{\:\sqrt{\mathrm{3}}}{j}\:\: \\ $$$${projection}\:{z}\:{axis}=\pm\frac{\sqrt{\mathrm{29}}}{\:\sqrt{\mathrm{3}}}{k} \\ $$$${others}\:{pls}\:{check}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *